K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

\(2010^{100}+2010^{99}=2010^{99}.\left(2010+1\right)=2010^{99}.2011\)chia hết cho 2011

24 tháng 9 2020

a, 2010100+201099=201099(2010+1)=201099.2011 =>2010100+201099 chia hết cho 11

  

18 tháng 11 2017

a) \(2010^{100}+2010^{99}\)

\(=2010^{99}\left(2010+1\right)\)

\(=2010^{99}.2011⋮2011\left(dpcm\right)\)

b) \(3^{1994}+3^{1993}-3^{1992}\)

\(=3^{1992}\left(3^2+3-1\right)\)

\(=3^{1992}.11⋮11\left(dpcm\right)\)

c) \(4^{13}+32^5-8^8\)

\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)

\(=2^{26}+2^{25}-2^{24}\)

\(=2^{24}\left(2^2+2-1\right)\)

\(=2^{24}.5⋮5\left(dpcm\right)\)

15 tháng 7 2017

Theo anh thì:

M=(1+2010)+(2010^2+2010^3)+(2010^4+2010^5)+(2010^6+2010^7)

M=(1+2010)+2010^2(1+2010)+2010^4(1+2010)+2010^6(1+2010)

M=2011(2010^2+1010^4+2010^6) Vậy M chia hết cho 2011 vì trong 1 tích chỉ cần có 1 thừa số chia hết cho 1 số thì cả tích đó chia hết cho số đó.

15 tháng 12 2015

tick cho mik 250 điểm hỏi đáp nhé 

\(7^{2021}+7^{2020}-7^{2019}=7^{2019}.7^2+7^1.7^{2020}-7^{2019}.1\)

\(=7^{2019}\left(7^2+7-1\right)=7^{2019}\left(49+7-1\right)=7^{2019}.55\)

Mà \(55⋮11\Leftrightarrow7^{2019}.55⋮11\)

Vậy \(7^{2021}+7^{2020}-7^{2019}⋮11\)

1 tháng 7 2020

em ko biết em mới học lơp3thui