Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6x^2+5y^2=74\Rightarrow5y^2\le74\Rightarrow y^2< 16\Rightarrow\left|y\right|< 4\Rightarrow-4< y< 4\)(1)
e,\(5y^2⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)(2)
Từ (1) và (2) kết hợp với y là số nguyên thì \(y\in\left\{-2;0;2\right\}\)
Thay vào đề bài thử loại y = 0 ta được 4 cặp số thỏa mãn là:
\(\left(x;y\right)\in\left\{\left(3;2\right),\left(3;-2\right),\left(-3;2\right),\left(-3;-2\right)\right\}\)
a) \(x-2xy+x=0\Leftrightarrow2x-2xy=0\)
\(\Leftrightarrow2x\left(1-y\right)=0\Leftrightarrow\hept{\begin{cases}2x=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
a,\(x-2xy+x=0=>2x-2xy=0=>2x\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\1-y=0\end{cases}\Rightarrow\orbr{\begin{cases}0\\1\end{cases}}}\)
Dùng phương pháp chặn :
x \(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2
\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3 (1)
x2 + y2 + z2 = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)
Kết hợp (1) và (2) ta có :
34/3 \(\le\) z2 \(\le\) 34
\(\Rightarrow\) z2 \(\in\) { 16; 25}
vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}
th1 Z = 4 ta có :
x2 + y2 + 16 = 34
x2 + y2 = 12
x \(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)
x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)
Kết hợp (*) và (**) ta có :
6 \(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3
với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)
th2 : z = 5 ta có :
x2 + y2 + 25 = 34
\(\Rightarrow\) x2 + y2 = 34 - 25 = 9
x \(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)
x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)
Kết hợp (a) và (b) ta có :
9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3
với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0
kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt
x+xy = 3-y
x(1+y) =3 - y => x =\(\frac{3-y}{1+y}\)
nếu y = 1 thi x = 1
y = 2 thì x = 1/3 (loại)
y = 3 => x = 0
y = -2 => x = -5
y = -3 => x = -3
Ta có : x + y + xy + 1 = 4
=> x.(y+1) + (y+1) = 4
=> (x+1).(y+1) = 4
Vì x,y nguyên nên ta xét các hệ phương trình :
x + 1 = 4 và y + 1 = 1 => x = 3, y = 0
x + 1 = -4 và y + 1 = -1 => x = -5, y = -2
x + 1 = 1 và y +1 = 4 => x = 0, y = 3
x + 1 = -1, y + 1 = -4 => x = -2, y = -5
x + 1 = 2, y + 1 = 2 => x = 1, y = 1
x + 1 = -2, y + 1 = -2 => x = -3, y = -3
Vậy (x,y) = .......( tự điền nốt nha) =) =)
vẽ hệ trục tọa dộ oxy và danh dau cac điểm A(-2,3): B(6;-1); (4;-5); D(-4;-1)
a, Có thể nói DB// trục hoành duoc không?
b Từ A va C ta có thể vẽ nhngx duong thag song song truc tung nó cat BD lần lượt ở M va N
CM:Tam giac ADM = tam giác CBN ; TAm giác ABM =mTAm giác CDN
c, CM: AD//BC; AB//DC
6 cặp nha bạn đúng thì k cho mik nha