K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

a)\(\frac{3xy}{9y}=\frac{\left(3y\right)x}{3.\left(3y\right)}=\frac{x}{3}\)(đúng)

b)\(\frac{3xy+3}{9y+3}=\frac{3\left(xy+1\right)}{3\left(3y+1\right)}=\frac{xy+1}{3y+1}\ne\frac{x}{3}\)(sai)

c)\(\frac{3xy+3}{9y+9}=\frac{3\left(xy+1\right)}{9\left(y+1\right)}=\frac{xy+1}{3\left(y+1\right)}\ne\frac{x+1}{3+3}=\frac{x+1}{6}\)(sai)

d)\(\frac{3xy+3x}{9y+9}=\frac{3y\left(y+1\right)}{9\left(y+1\right)}=\frac{x}{3}\)(đúng)

26 tháng 8 2017

Mik chịu thôi, bó tay.com.

26 tháng 8 2017

1 . 

Ta có AB = BC (gt)

Suy ra  ∆ABC cân

Nên ˆA1=ˆC1A1^=C1^  (1)

Lại có ˆA1=ˆA2A1^=A2^ (2) (vì AC là tia phân giác của ˆAA^)

Từ (1) và (2) suy ra ˆC1=ˆA2C1^=A2^

nên BC // AD (do ˆC1,ˆA2C1^,A2^ ở vị trí so le trong)

Vậy ABCD là hình thang

7 tháng 10 2015

.

Tứ giác EFGH là hình bình hành.

Cách 1: EB = EA, FB = FC (gt)

nên EF là đường trung bình của ∆ABC.

Do đó EF // AC

Tương tự HG là đường trung bình của ∆ACD.

Do đó HG // AC

Suy ra EF // HG       (1)

Tương tự EH // FG   (2)

Từ (1) và (2) suy ra EFGH là hình bình hành (dấu hiêu nhận biết 1).

Cách 2: EF là đường trung bình của ∆ABC nên EF = AC.

HG là đường trung bình của ∆ACD nên HG = AC.

Suy ra EF = HG

Lại có EF // HG ( chứng minh trên)

Vậy EFGH là hình bình hành (dấu hiệu nhận biết 3)

8 tháng 10 2019

Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.

Giải bài 64 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

 
8 tháng 10 2019

Theo giả thiết ABCD là hình bình hành nên ta có:

ˆDAB=ˆDCB,ˆADC=ˆABC         (1)

Theo định lí tổng các góc của một tứ giác ta có:

ˆDAB+ˆDCB+ˆADC+ˆABC=360o                (2)

Từ (1) và (2) ⇒ˆDAB+ˆABC=360o/2=180o

Vì AG là tia phân giác ˆDAB (giả thiết)

⇒⇒ ˆBAG=1/2ˆDAB (tính chất tia phân giác)

Vì BG là tia phân giác ˆABC (giả thiết)

⇒⇒  ˆABG=1/2ˆABC

Do đó: ˆBAG+ˆABG=1/2(ˆDAB+ˆABC)=1/2.1800=90o

Xét ΔAGB= có:

ˆBAG+ˆABG=90o   (3)

Áp dụng định lí tổng ba góc trong một tam giác vào tam giác AGBAGB ta có:

ˆBAG+ˆABG+ˆAGB=180o            (4)

Từ (3) và (4) ⇒ˆAGB=90o      

Chứng minh tương tự ta được: ˆDEC=ˆEHG=90o

Tứ giác EFGH có ba góc vuông nên là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)

21 tháng 9 2018

chứng tỏ cái gì

21 tháng 9 2018

Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng: 

- Chứng Tỏ Rằng J Hả Bạn ??????

25 tháng 11 2017

sgk toán 8 tập 1

Bài 74. Hai đường chéo của một hình thoi bằng 8cm8cm và 10cm10cm. Cạnh của hình thoi bằng giá trị nào trong các giá trị sau:

(A) 6cm6cm;                     (B) √41cm41cm                  

(C) √164cm164cm               (D) 9cm9cm ?

Bài giải:      

                                                

Xét bài toán tổng quát:

ABCDABCD là hình thoi, OO là giao điểm hai đường chéo.

Theo tính của hình thoi hai đường chéo của hình thoi vuông góc và cắt nhau tại trung điểm mỗi đường.

Áp dụng định lí Pytago vào tam giác vuông ABOABO ta có:

AB2=OA2+OB2=(12AC)2+(12BD)2⇒AB=√(12AC)2+(12BD)2=√42+52=√41cmAB2=OA2+OB2=(12AC)2+(12BD)2⇒AB=(12AC)2+(12BD)2=42+52=41cm

Vậy (B) đúng.

Bài 79.

a) Một hình vuông có cạnh bằng 3cm3cm. Đường chéo của hình vuông đó bằng 6cm6cm,  √18cm18cm, 5cm5cm hay 4cm4cm ?

b) Đường  chéo của một hình vuông bằng 2dm2dm. Cạnh cảu hình vuông đó bằng: 1dm1dm,

32dm32dm, √2dm2dm hay 43dm43dm ?

Bài giải:

a) Gọi đường chéo của hình vuông có độ dài là aa.

Ta có: a2=32+32=18a2=32+32=18

Suy ra a=√18a=18

Vậy đường chéo của hình vuông đó bằng √18cm18cm.

b) Gọi cạnh của hình vuông là aa.

Ta có  a2+a2=22⇒2a2=4⇒a2=2⇒a=√2a2+a2=22⇒2a2=4⇒a2=2⇒a=2

Vậy cạnh của hình vuông đó bằng √2dm2dm.

25 tháng 11 2017

nhưng mình hỏi ở sách NÂNG CAO VÀ PHÁT TRIỂN TOÁN 8