Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co
BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la tia p/g goc B)
--> tam giac ABE= tam giac HBE ( ch=gn)
b) ta co
BA=BH ( tam giac ABE= tam giac HBE)
EA=EH( tam giac ABE= tam giac HBE)
==> BE la duong trung truc cua AH
c) xet tam giac EKA va tam giac ECH ta co
AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )
--> tam giac EKA = tam giac ECH ( g--c-g)
--> EK=EC (2 canh tuong ung )
d) tu diem E den duong thang HC ta co :
EH la duong vuong goc ( EH vuong goc BC)
EC la duong xien
-> EH<EC ( quan he duong xien duong vuong goc)
ma EH= AE ( tam giac ABE= tam giac HBE)
nen AE < EC
Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng
1) Tam giác ABE=tam giác HBE
2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC
3) AE<EC
Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
Câu 1
P(x)=0=> x=3
Q(y)=0=> y=5/2
Câu 2
a/ Xét hai tam giác vuông ABE và HBE có
BE chung là cạnh huyền
^ABE=^HBE (BE là phân giác ^ABC)
=> tam giác ABE = tam giác HBE ( hai tam giác xuông có cạnh huyền và 1 góc nhọn tương ứng bằng nhau thì băng nhau)
b/ Ta có tg ABE= tg HBE (c/m câu a) => BA=BH => tam giác ABH cân tại H
BE là phân giác ^ABC (đề bài)
=> BE là trung trực của AH (trong tam giác cân đường phân giác của góc ở đỉnh đồng thời là đường cao, đường trung tuyến và đường trung trực)
c/ Xét hai tam giác vuông AKE và tam giác vuông HCE có
AE=HE (do tg ABE=tg HBE)
^AEK=^HEC (góc đối đỉnh)
=> tg AKE=tg HCE (tam giác vuông có cạnh góc vuông và góc nhon tương ứng bằng nhau)
=> EK=EC
d/ Xét tam giác vuông AKE có AE<EK (trong tam giác vuông cạnh huyền là cạnh có độ dài lớn nhất)
mà EK=EC
=> AE<EC
Câu 1:
P(x) = 3 - x = 0 <=> x = 3
Vậy 3 là nghiệm của P(x)
Q(y) = 2y - 5 = 0 <=> 2y = 5 <=> y = 5/2 = 2.5
Vậy 2.5 là nghiệm đa thức Q(y)
a, xét 2 tam giác vuông ABE và HBE có:
BE cạnh chung
\(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)
=> tam giác ABE =tam giác HBE(CH-GN)
b) gọi O là giao điểm của BE và AH
xét tam giác OAB và tam giác OHB có:
OB chung
\(\widehat{OBA}\)=\(\widehat{OBH}\)(gt)
AB=HB(theo câu a)
=> tam giác OAB=tam giác OHB(c.g.c)
=> OA=OH=> O là trung điểm của AH(1)
\(\widehat{AOB=\widehat{HOB}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB=\widehat{HOB}}\)=90 độ => BO\(\perp\)AH(2)
từ (1) và (2) => BE là trung trực của AH
c)xét 2 tam giác vuông EAK và HEC có:
AE=EH
\(\widehat{AEK=\widehat{HEC}}\)(đối đỉnh)
=> tam giác EAK=tam giác HEC(cạnh góc vuông-góc nhọn)
=> EK=EC
d) trong tam giác vuông AEK có: AE<EK(vì cạnh huyền>cạnh góc vuông) mà EK=EC=> AE<EC
A B C E H K O
Xét ΔABE và ΔHBE có:
\(\widehat{BAE}=\widehat{BHE}=90\) (gt)
BE:cạnh chung
\(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)
=> ΔABE =ΔHBE(cạnh huyền-góc nhọn)
b) Vì ΔABE=ΔHBE(cmt)
=> AB=BH ; AE=EH
=> B,E \(\in\) đường trung trực của đoạn thẳng AH
=>BE là đường trung trực của đoạn thẳng AH
c) Xét ΔAEK và ΔHEC có:
\(\widehat{KAE}=\widehat{CHE}=90\left(gt\right)\)
AE=EH(cmt)
\(\widehat{AEK}=\widehat{HEC}\)
=>ΔAEK=ΔHEC(g.c.g)
=>EK=EC
d) Xét ΔEHC vuông tại H(gt)
=> HE<EC
Mà: HE=AE(cmt)
=>AE<EC
d) Xét ΔHKC có:
KH,CA là hai đường cao
=> E là trực tâm của ΔBKC
=>BE là đường cao
=> AE vuông góc KC
a)
xét 2 tam giác vuông ABE và HBE có:
BE(chung)
góc ABE= góc CBE(gt)
=> ΔABE=ΔHBE(CH-GN)
b)
gọi giao của BE và AH là F
xét ΔABF và ΔHBF có:
AB=HB(theo câu a, ΔABE=ΔHBE)
BF(chung)
góc ABE=góc HBE(gt)
=> ΔABF=ΔHBF(c.g.c)
=>\(\begin{cases}FA=FH\\\widehat{AFB}=\widehat{BFH}=180^o:2=90^o\end{cases}\)
=> BE là đường trung trực của AH
c)
xét ΔAEK và ΔHEC có:
EA=EH(theo câu a, ΔABE=ΔHBE)
góc KAE=góc EHC=90º(gt)
góc AEK=góc CEH(2 góc đối đỉnh)
=>ΔAEK=ΔHEC(g.c.g)
=>EK=EC
d)
ta có ΔAEK vuông tại A
=> EK>AE
mà EK=EC(theo câu c)
=> AE<EC
e)
theo câu a, ta có: ΔABE=ΔHBE(CH-GN)
=>AB=HB
theo câu c, ta có: ΔAEK=ΔHEC(g.c.g)
=> AK=HC
ta có: KB=KA+AB
CB=CH+HB
=>KB=CB
=>ΔKBC cân tại B
ta có:ΔKCB cân tại B có BE là đường phân giác
=>BE đồng thời là đường cao của ΔKBC
=>BE_|_KC
f)
áp dụng định lí py-ta-go ta có;
\(AC^2=BC^2-AB^2=5^2-3^2=25-9=16\)
\(AC=\sqrt{16}=4\left(cm\right)\)
theo câu e; ta có ΔKBC cân tại B
=> BC=BK=5cm
AK=BC-AB=5cm-3cm=2cm
áp dụng định lí py-ta-go ta có:
\(KC^2=AK^2+AC^2=4^2+2^2=16+4=20\)
\(KC=\sqrt{20}\left(cm\right)\)
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
Bài 1:
Xét \(\Delta AEBvs\Delta HEB\)
BE cạnh huyền chung
\(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)
\(\Delta AEB=\Delta HEB\)( cạnh huyền- góc nhọn)
\(\Rightarrow AB=HB;AE=EH\)( Các cặp cạnh tương ứng)
=> BE là đường trung trực của AH do(\(AB=HB;AE=EH\))
b) Xét\(\Delta AEKvs\Delta HEC\)
AE=EH( cmt)
\(\widehat{EAK}=\widehat{EHC}=90^0\)
\(\widehat{KEA}=\widehat{CEH}\)(đối đỉnh)
\(\Delta AEK=\Delta HEC\)(g-c-g)
=>EK=EC cặp cạnh tương ứng
c) Theo kết quả câu a ta đã có EA=EH
Trong tam giác vuông EHC có EH<EC
Nên EA< EC hay AE<EC
B H C A E K
hình vẽ không được chính xác nhe bạn
Bài 2 đề yêu cầu làm gì vậy bạn?
bài 2 la f tính giá trị của đa thức Q tại x= 1996