Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABE và tam giác ACE có:
+ AE chung.
+ AB = AC (gt).
+ BE = CE (E là trung điểm của BC).
=> Tam giác ABE = Tam giác ACE (c - c - c).
b) Xét tam giác ABC có: AB = AC (gt).
=> Tam giác ABC cân tại A.
Mà AE là đường trung tuyến (E là trung điểm của BC).
=> AE là phân giác ^BAC (Tính chất các đường trong tam giác cân).
c) Xét tam giác ABC cân tại A có:
AE là phân giác ^BAC (cmt).
=> AE là đường cao (Tính chất các đường trong tam giác cân).
=> AE \(\perp\) BC.
Xét tam giác BIE và tam giác CIE:
+ IE chung.
+ BE = CE (E là trung điểm của BC).
+ ^BEI = ^CEI ( = 90o).
=> Tam giác BIE = Tam giác CIE (c - g - c).
| 7x - 10 | + 7x = 10
| 7x - 10 | = 10 - 7x
=> 7x - 10 thuộc { 10 - 7x; -10 + 7x }
+) 7x - 10 = 10 - 7x
7x + 7x = 10 + 10
14x = 20
x = 10/7
+) 7x - 10 = -10 + 7x
7x - 7x = -10 + 10
0x = 0
=> x = 0
Học tốt O.o
TH1 : x < 10/7
=> / 7x - 10 / +7x = 10 - 7x + 7x = 10 ( luôn đúng )
=> với mọi x < 10/7, ta luôn có / 7x - 10 / + 7x = 10
TH2 : x = 10/7
=> /7x - 10/ + 7x = 0 + 7x = 10
=> x = 10/ 7 ( thỏa mãn )
TH3 : x > 10/7
=> / 7x - 10 / + 7x = 7x - 10 + 7x = 10
=> 14 x = 10
=> x = 10/ 7 ( loại )
Vậy với mọi x < 10/7, biểu thức trên luôn đúng
Bài 5:
Gọi số sách 7A,7B,7C,7D lần lượt là \(a,b,c,d\in \mathbb{N^*},sách\)
Áp dụng tc dtsbn:
\(\dfrac{a}{37}=\dfrac{b}{37}=\dfrac{c}{40}=\dfrac{d}{36}=\dfrac{c-d}{40-36}=\dfrac{12}{4}=3\\ \Rightarrow\left\{{}\begin{matrix}a=111\\b=111\\c=120\\d=108\end{matrix}\right.\)
Vậy ...
Bài 6:
Gọi cd, cr theo thứ tự là \(a,b>0;m\)
\(\Rightarrow a:b=5:4\Rightarrow\dfrac{a}{5}=\dfrac{b}{4}\)
Đặt \(\dfrac{a}{5}=\dfrac{b}{4}=k\Rightarrow a=5k;b=4k\)
Mà \(ab=500\Rightarrow20k^2=500\Rightarrow k^2=25\Rightarrow k=5\left(k>0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a=5\cdot5=25\\b=5\cdot4=20\end{matrix}\right.\\ \Rightarrow\text{Chu vi là }2\left(a+b\right)=2\left(25+20\right)=90\left(m\right)\)
Câu 3:
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{90}{5}=18\)
Do đó: x=54; y=36
a: Xét ΔAMB và ΔAMC có
AM chung
\(\widehat{BAM}=\widehat{CAM}\)
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên AM là đường trung trực
\(2^{600}=\left(2^3\right)^{200}=8^{200}\)
\(3^{400}=\left(3^2\right)^{200}=9^{200}\)
VÌ \(8^{200}< 9^{200}\)
---> \(2^{600}< 3^{400}\)
XIN TIICK
2 mũ 600 nhé mà a zai lớp 6 hỏi cái này làm gì
t i c k e nhé a zai :)
Lời giải:
a. Với $n$ nguyên khác -3, để $B$ nguyên thì:
$2n+9\vdots n+3$
$\Rightarrow 2(n+3)+3\vdots n+3$
$\Rightarrow 3\vdots n+3$
$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$
b.
$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$
Để $B_{\max}$ thì $\frac{3}{n+3}$ max
Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất
Tức là $n+3=1$
$\Leftrightarrow n=-2$
c. Để $B$ min thì $\frac{3}{n+3}$ min
Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất
Tức là $n+3=-1$
$\Leftrightarrow n=-4$
ĐKXĐ : 2x \(\ge\)0 <=> x \(\ge\)0
| 7 + x | = 2x <=> \(\orbr{\begin{cases}7+x=2x\\7+x=-2x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=7\\x=\frac{-7}{3}\end{cases}}\)( KTMĐK)
Vậy x = 7