K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

\(2x^4-7x^3+9x^2-7x+2=0\)

\(\Leftrightarrow2x^4-x^3-6x^3+3x^2+6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x^4-x^3\right)-\left(6x^3-3x^2\right)+\left(6x^2-3x\right)-\left(4x-2\right)=0\)

\(\Leftrightarrow x^3\left(2x-1\right)-3x^2\left(2x-1\right)+3x\left(2x-1\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)(1)

Ta dễ thấy \(x^3-3x^2+3x-2>0\forall x\) nên để PT (1) có nghiệm \(\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy nghiệp phương trình trên là \(S=\left\{\frac{1}{2}\right\}\)

9 tháng 9 2017

Sủa chút : \(\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left[\left(x^3-2x^2\right)+\left(-x^2+2x\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)

13 tháng 3 2020

sai đề rồi

13 tháng 3 2020

dung ma

5 tháng 12 2016

2x^2-7x+5=0

=> (2x+5)x(x+1) =0

=>  TH1:  2x+5=0

                2x   =  0-5=-5

                 x    =    -5/2(  =-2,5)

      TH2:  x+1=0

                 x  = 0-1=-1

vậy x= -2,5 hoặc x= - 1

ủng hộ nha mn

5 tháng 12 2016

cam on nha

28 tháng 3 2020

Dùng lược đồ hooc-nơ em nhé. Em có thể lên google để tìm hiểu về nó.

4 tháng 4 2018

vì x=0 không là nghiệm của pt => chia cả 2 vế cho x2≠0

2x2-7x+9-\(\dfrac{7}{x}\)+\(\dfrac{2}{x^2}\)=0

<=>\(\left(2x^2+\dfrac{2}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+9=0\)

<=>\(2\left(x^2+\dfrac{1}{x^2}\right)-7\left(x+\dfrac{1}{x}\right)+9=0\)

đặt \(x+\dfrac{1}{x}\)=y =>\(x^2+\dfrac{1}{x^2}=y^2-2\) ta đc

2(y2-2)-7y+9=0

<=> 2y2-4-7y+9=0

<=>2y2-7y+5=0

<=> 2y2-2y-5y+5=0

<=> (2y2-2y)-(5y-5)=0

<=> 2y(y-1)-5(y-1)=0

<=>(y-1)(2y-5)=0

<=>\(\left\{{}\begin{matrix}y-1=0\\2y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\y=\dfrac{5}{2}\end{matrix}\right.\)

Với y=1 ta có

\(x+\dfrac{1}{x}=1\) =>x2-x+1=0 (vô nghiệm)

Với y=5/2

\(x+\dfrac{1}{x}=\dfrac{5}{2}\) => x=2 và x=\(\dfrac{1}{2}\)

vậy pt có S=\(\left\{2;\dfrac{1}{2}\right\}\)

 

 

4 tháng 4 2018

\(2x^4-7x^3+9x^2-7x+2=0\)

\(\Leftrightarrow2x^4-2x^3-x^3-4x^3+2x^2+x^2+4x^2+2x^2-x-4x-2x+2=0\)

\(\Leftrightarrow\left(2x^4-2x^3+2x^2\right)-\left(x^3-x^2+x\right)-\left(4x^3-4x^2+4x\right)+\left(2x^2-2x+2\right)=0\)

\(\Leftrightarrow2x^2\left(2x^2-2x+2\right)-\dfrac{1}{2}x\left(2x^2-2x+2\right)-2x\left(2x^2-2x+2\right)+\left(2x^2-2x+2\right)=0\)

\(\Leftrightarrow\left(2x^2-2x+2\right)\left(x^2-\dfrac{1}{2}x-2x+1\right)=0\)

\(\Leftrightarrow\left(2x^2-2x+2\right)\left[x\left(x-\dfrac{1}{2}\right)-2\left(x-\dfrac{1}{2}\right)\right]=0\)

\(\Leftrightarrow\left(2x^2-2x+2\right)\left(x-\dfrac{1}{2}\right)\left(x-2\right)=0\)

Vì: \(2x^2-2x+2=\left(\sqrt{2}x-\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{3}{2}>0\forall x\)

Nên: \(\left[{}\begin{matrix}x-\dfrac{1}{2}=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

Vậy..................

p/s: 1 cách khác :))

13 tháng 3 2020
X~268
13 tháng 3 2020

Sai đề rồi ??

22 tháng 10 2021

\(a,=x^2-4x+4-\dfrac{15}{4}=\left(x-2\right)^2-\dfrac{15}{4}=\left(x-2-\dfrac{\sqrt{15}}{2}\right)\left(x-2+\dfrac{\sqrt{15}}{2}\right)\\ b,=?\\ c,\Rightarrow x^2+7x-8=0\\ \Rightarrow\left(x+8\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\\ d,Sửa:x^3-3x^2=-27+9x\\ \Rightarrow x^3-3x^2+9x-27=0\\ \Rightarrow x^2\left(x-3\right)+9\left(x-3\right)=0\\ \Rightarrow\left(x^2+9\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-9\left(vô.lí\right)\\x=3\end{matrix}\right.\\ \Rightarrow x=3\\ e,\Rightarrow x\left(x-3\right)-7x+21=0\\ \Rightarrow x\left(x-3\right)-7\left(x-3\right)=0\\ \Rightarrow\left(x-7\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\\ f,\Rightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ \Rightarrow x=2\)

\(g,\Rightarrow x^2-4x+4=0\\ \Rightarrow\left(x-2\right)^2=0\\ \Rightarrow x=2\\ h,Sửa:x^3-x^2+x=1\\ \Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=1\end{matrix}\right.\\ \Rightarrow x=1\)

22 tháng 10 2021

cảm ơn kou nhaa:3

mà cái ý b đầu bài là 8x\(^2-25\), kou giải giúp tớ uwu