K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2021

b) \(B=\sqrt{12+2\sqrt{35}}=\sqrt{12+2.\sqrt{7}.\sqrt{5}}=\sqrt{\left(\sqrt{7}\right)^2+2.\sqrt{7}.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{7}+\sqrt{5}\right)^2}=\left|\sqrt{7}+\sqrt{5}\right|\)

Vì \(\sqrt{7}>\sqrt{5}\) nên \(\left|\sqrt{7}+\sqrt{5}\right|=\sqrt{7}+\sqrt{5}\)

 

 

22 tháng 4 2021

d) \(D=\sqrt{6-\sqrt{35}}+\sqrt{10}=\sqrt{2}.\sqrt{6-\sqrt{35}}+\sqrt{5}=\sqrt{12-\sqrt{35}}+\sqrt{5}=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}+\sqrt{5}=\left|\sqrt{7}-\sqrt{5}\right|+\sqrt{5}=\sqrt{7}-\sqrt{5}+\sqrt{5}=\sqrt{7}\)

12 tháng 6 2021

Thẳng thắng như thế này , em nên tự lực mình làm trước. Nếu như khó khăn, thắc mắc câu gì thì hãy lên đây hỏi. Mọi người không có quá nhiều thời gian để giải chi tiết tất cả trắc nghiệm cho em như tự luận được.

a) Thay m=3 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3y=3-3\cdot\dfrac{3}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)

15 tháng 5 2021

 làm câu b đc ko ạ

a) Thay m=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3\cdot\dfrac{3}{5}=\dfrac{15}{5}-\dfrac{9}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)

15 tháng 4 2016

\(x^4+\sqrt{x^2+2016}=2016\)

\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2016-\sqrt{x^2+2016}+\frac{1}{4}\)

\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2016}-\frac{1}{2}\right)^2\)

\(\Leftrightarrow x^2+\frac{1}{2}=\sqrt{x^2+2016}-\frac{1}{2}\text{ }\left(do\text{ }\sqrt{x^2+2016}-\frac{1}{2}>0\right)\)

\(\Leftrightarrow x^2+1=\sqrt{x^2+2016}\)

\(t=x^2\ge0\)

\(\rightarrow t+1=\sqrt{t+2016}\Leftrightarrow t^2+2t+1=t+2016\)

\(\Leftrightarrow t^2+t-2015=0\Leftrightarrow t=\frac{-1+\sqrt{8061}}{2}\text{ }\left(do\text{ }t\ge0\right)\)

\(\Leftrightarrow x=\pm\sqrt{\frac{-1+\sqrt{8061}}{2}}\)