K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

viết đề khó hiểu quá

17 tháng 6 2016

Xin lỗi ạ.  Tại không giỏi đánh máy.  Vậy bỏ câu này đi ạ.  Chị giải câu kia giúp e nhé

NV
4 tháng 3 2020

Đặt \(\left\{{}\begin{matrix}\sqrt{x-y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

Phương trình đầu trở thành:

\(\left(1-b^2\right)a+a^2+b^2=2+\left(a^2-1\right)b\)

\(\Leftrightarrow a+b+a^2+b^2-a^2b-ab^2-2=0\)

\(\Leftrightarrow a-1+b-1-a^2\left(b-1\right)-b^2\left(a-1\right)=0\)

\(\Leftrightarrow\left(1-b^2\right)\left(a-1\right)+\left(a^2-1\right)\left(1-b\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(1-b\right)\left(2+a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y+1\\y=1\end{matrix}\right.\)

Trường hợp \(y=1\) đơn giản bạn tự thay xuống giải

- Với \(x=y+1\)

\(2y^2-3\left(y+1\right)+6y+1-2\sqrt{1-y}+\sqrt{1-y}=0\)

\(\Leftrightarrow2y^2+3y-2-\sqrt{1-y}=0\)

\(\Leftrightarrow2y^2+2y-2+y-\sqrt{1-y}=0\)

\(\Leftrightarrow2\left(y^2+y-1\right)+\frac{y^2+y-1}{y+\sqrt{1-y}}=0\)

Nhớ nhìn căn thức và loại nghiệm theo ĐKXĐ

18 tháng 8 2016

bài này đặt ẩn đi nhìn hệ to quá cx ngại

18 tháng 8 2016

dung ham dac trung do'

4 tháng 12 2019

Ta có: \(\left( 1 \right) \Leftrightarrow \left( {1 - y} \right)\sqrt {x - y} + \left( {x - y - 1} \right) + y - 1 = \left( {x - y - 1} \right)\sqrt y \)

\( \Leftrightarrow \left( {1 - y} \right)\left( {\sqrt {x - y} - 1} \right) + \left( {x - y - 1} \right)\left( {1 - \sqrt y } \right) = 0\\ \Leftrightarrow \left( {1 - \sqrt y } \right)\left( {1 + \sqrt y } \right)\left( {\sqrt {x - y} - 1} \right) + \left( {\sqrt {x - y} - 1} \right)\left( {\sqrt {x - y} + 1} \right)\left( {1 - \sqrt y } \right) = 0\\ \Leftrightarrow \left( {1 - \sqrt y } \right)\left( {\sqrt {x - y} - 1} \right)\left( {1 + \sqrt y + \sqrt {x - y} + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} \sqrt y = 1\\ \sqrt {x - y} = 1\\ 2 + \sqrt y + \sqrt {x - y} = 0 \text{(vô nghiệm do vế trái dương)} \end{array} \right. \)

\(\Leftrightarrow y = 1 \vee x = y + 1 \)

* Với \(y=1\) thay vào (2) ta được \(-3x+9=0 \Leftrightarrow x = 3\)

Vậy nghiệm hệ phương trình là \((3;1)\)

* Với \(x=y+1\) thay vào (2) ta được:

\( 2{y^2} - 3\left( {y + 1} \right) + 6y + 1 = 2\sqrt {y + 1 - 2y} - \sqrt {4\left( {1 + y} \right) - 5y - 3} \\ \Leftrightarrow 2{y^2} + 3y - 2 = \sqrt {1 - y} \left( * \right) (ĐK: y \in \left[ {0;1} \right]) \)

\( \Leftrightarrow 2\left( {{y^2} + y - 1} \right) = \sqrt {1 - y} - y \Leftrightarrow 2\left( {{y^2} + y - 1} \right) = \dfrac{{1 - y - {y^2}}}{{\sqrt {11 - y} + y}}\\ \Leftrightarrow \left( {{y^2} + y - 1} \right)\left( {2 + \dfrac{1}{{\sqrt {1 - y} + y}}} \right) = 0\\ \Leftrightarrow {y^2} + y - 1 = 0\left( {do2 + \dfrac{1}{{\sqrt {1 - y} + y}} > 0\forall y \in \left[ {0;1} \right]} \right)\\ \Leftrightarrow y = \dfrac{{ - 1 + \sqrt 5 }}{2} \)

Vậy nghiệm hệ phương trình là: \(\left( {\dfrac{{1 + \sqrt 5 }}{2};\dfrac{{ - 1 + \sqrt 5 }}{2}} \right) \)

NV
8 tháng 3 2020

ĐKXĐ: ...

\(\sqrt{12y-x^2y}=12-x\sqrt{12-y}\)

\(\Rightarrow12y-x^2y=144+12x^2-x^2y-24x\sqrt{12-y}\)

\(\Leftrightarrow x^2-2x\sqrt{12-y}+12-y=0\)

\(\Leftrightarrow\left(x-\sqrt{12-y}\right)^2=0\Rightarrow x=\sqrt{12-y}\)

\(\Rightarrow y=12-x^2\)

Thay vào pt (1):

\(3x^2-x+3=\sqrt{3x+1}+\sqrt{5x+4}\)

\(\Leftrightarrow3x^2-3x+\left(x+1-\sqrt{3x+1}\right)+\left(x+2-\sqrt{5x+4}\right)=0\)

\(\Leftrightarrow3\left(x^2-x\right)+\frac{x^2-x}{x+1+\sqrt{3x+1}}+\frac{x^2-x}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow...\)