Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi ạ. Tại không giỏi đánh máy. Vậy bỏ câu này đi ạ. Chị giải câu kia giúp e nhé
Đặt \(\left\{{}\begin{matrix}\sqrt{x-y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
Phương trình đầu trở thành:
\(\left(1-b^2\right)a+a^2+b^2=2+\left(a^2-1\right)b\)
\(\Leftrightarrow a+b+a^2+b^2-a^2b-ab^2-2=0\)
\(\Leftrightarrow a-1+b-1-a^2\left(b-1\right)-b^2\left(a-1\right)=0\)
\(\Leftrightarrow\left(1-b^2\right)\left(a-1\right)+\left(a^2-1\right)\left(1-b\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)\left(2+a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y+1\\y=1\end{matrix}\right.\)
Trường hợp \(y=1\) đơn giản bạn tự thay xuống giải
- Với \(x=y+1\)
\(2y^2-3\left(y+1\right)+6y+1-2\sqrt{1-y}+\sqrt{1-y}=0\)
\(\Leftrightarrow2y^2+3y-2-\sqrt{1-y}=0\)
\(\Leftrightarrow2y^2+2y-2+y-\sqrt{1-y}=0\)
\(\Leftrightarrow2\left(y^2+y-1\right)+\frac{y^2+y-1}{y+\sqrt{1-y}}=0\)
Nhớ nhìn căn thức và loại nghiệm theo ĐKXĐ
Ta có: \(\left( 1 \right) \Leftrightarrow \left( {1 - y} \right)\sqrt {x - y} + \left( {x - y - 1} \right) + y - 1 = \left( {x - y - 1} \right)\sqrt y \)
\( \Leftrightarrow \left( {1 - y} \right)\left( {\sqrt {x - y} - 1} \right) + \left( {x - y - 1} \right)\left( {1 - \sqrt y } \right) = 0\\ \Leftrightarrow \left( {1 - \sqrt y } \right)\left( {1 + \sqrt y } \right)\left( {\sqrt {x - y} - 1} \right) + \left( {\sqrt {x - y} - 1} \right)\left( {\sqrt {x - y} + 1} \right)\left( {1 - \sqrt y } \right) = 0\\ \Leftrightarrow \left( {1 - \sqrt y } \right)\left( {\sqrt {x - y} - 1} \right)\left( {1 + \sqrt y + \sqrt {x - y} + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} \sqrt y = 1\\ \sqrt {x - y} = 1\\ 2 + \sqrt y + \sqrt {x - y} = 0 \text{(vô nghiệm do vế trái dương)} \end{array} \right. \)
\(\Leftrightarrow y = 1 \vee x = y + 1 \)
* Với \(y=1\) thay vào (2) ta được \(-3x+9=0 \Leftrightarrow x = 3\)
Vậy nghiệm hệ phương trình là \((3;1)\)
* Với \(x=y+1\) thay vào (2) ta được:
\( 2{y^2} - 3\left( {y + 1} \right) + 6y + 1 = 2\sqrt {y + 1 - 2y} - \sqrt {4\left( {1 + y} \right) - 5y - 3} \\ \Leftrightarrow 2{y^2} + 3y - 2 = \sqrt {1 - y} \left( * \right) (ĐK: y \in \left[ {0;1} \right]) \)
\( \Leftrightarrow 2\left( {{y^2} + y - 1} \right) = \sqrt {1 - y} - y \Leftrightarrow 2\left( {{y^2} + y - 1} \right) = \dfrac{{1 - y - {y^2}}}{{\sqrt {11 - y} + y}}\\ \Leftrightarrow \left( {{y^2} + y - 1} \right)\left( {2 + \dfrac{1}{{\sqrt {1 - y} + y}}} \right) = 0\\ \Leftrightarrow {y^2} + y - 1 = 0\left( {do2 + \dfrac{1}{{\sqrt {1 - y} + y}} > 0\forall y \in \left[ {0;1} \right]} \right)\\ \Leftrightarrow y = \dfrac{{ - 1 + \sqrt 5 }}{2} \)
Vậy nghiệm hệ phương trình là: \(\left( {\dfrac{{1 + \sqrt 5 }}{2};\dfrac{{ - 1 + \sqrt 5 }}{2}} \right) \)
ĐKXĐ: ...
\(\sqrt{12y-x^2y}=12-x\sqrt{12-y}\)
\(\Rightarrow12y-x^2y=144+12x^2-x^2y-24x\sqrt{12-y}\)
\(\Leftrightarrow x^2-2x\sqrt{12-y}+12-y=0\)
\(\Leftrightarrow\left(x-\sqrt{12-y}\right)^2=0\Rightarrow x=\sqrt{12-y}\)
\(\Rightarrow y=12-x^2\)
Thay vào pt (1):
\(3x^2-x+3=\sqrt{3x+1}+\sqrt{5x+4}\)
\(\Leftrightarrow3x^2-3x+\left(x+1-\sqrt{3x+1}\right)+\left(x+2-\sqrt{5x+4}\right)=0\)
\(\Leftrightarrow3\left(x^2-x\right)+\frac{x^2-x}{x+1+\sqrt{3x+1}}+\frac{x^2-x}{x+2+\sqrt{5x+4}}=0\)
\(\Leftrightarrow...\)