K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: =>x^2-5x+6-x^2-5x-6=x^2+1-x^2+9

=>-10x=10

=>x=-1(nhận)

2: \(\Leftrightarrow3x^2-15x-x^2+2x-2x^2=0\)

=>-13x=0

=>x=0

3: \(\Leftrightarrow13\left(x+3\right)+x^2-9=12x+42\)

=>x^2-9+13x+39-12x-42=0

=>x^2+x-12=0

=>(x+4)(x-3)=0

=>x=3(loại) hoặc x=-4(nhận)

4: \(\Leftrightarrow-2+x^2-5x+4=x^2+x-6\)

=>-5x-2=x-6

=>-6x=-4

=>x=2/3

a: AN+CN=AC

=>AN=20-15=5cm

Xét ΔABC có AM/AB=AN/AC

nên MN//BC

b: Xét ΔAMN và ΔNPC có

góc AMN=góc NPC(=góc B)

góc ANM=góc NCP)

=>ΔAMN đồng dạng với ΔNPC

20 tháng 12 2021

undefined

Câu 106: 

a: Xét ΔABC có 

P là trung điểm của AB

N là trung điểm của AC

Do đó: PN là đường trung bình của ΔABC

Suy ra: PN//BC

hay PN//HM; QN//HM

Xét tứ giác QNMH có QN//HM

nên QNMH là hình thang

mà \(\widehat{QHM}=90^0\)

nên QNMH là hình thang vuông

b: Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến ứng với cạnh huyền AC

nên \(HN=\dfrac{AC}{2}\left(1\right)\)

Xét ΔABC có

M là trung điểm của BC

P là trung điểm của AB

Do đó: MP là đường trung bình của ΔABC

Suy ra: MP//AC và \(MP=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có PN//HM

nên MNPH là hình thang

mà MP=HN

nên MNPH là hình thang cân

8 tháng 9 2021

bạn đinhr thực sự hâm mộ bạn luôn á cam rơn nhìu nha mong bn sẽ luôn giúp đỡ mik :)

Bài cuối mình không thấy rõ đề nhưng mình đoán là thế này bạn nhé.

undefined

 

30 tháng 7 2021

Cảm ơn cậu nhiều lắm ạ 

Bài 2: 

a: Xét ΔABC có

X là trung điểm của BC

Y là trung điểm của AB

Do đó: XY là đường trung bình

=>XY//AC và XY=AC/2=3,5(cm)

hay XZ//AC và XZ=AC

b: Xét tứ giác AZBX có 

Y là trung điểm của AB

Y là trung điểm của ZX

Do đó: AZBX là hình bình hành

mà \(\widehat{AXB}=90^0\)

nên AZBX là hình chữ nhật

d: Xét tứ giác AZXC có

XZ//AC

XZ=AC

Do đó: AZXC là hình bình hành

13 tháng 12 2021

\(a,\dfrac{11x}{2x-5}+\dfrac{x-30}{2x-5}=\dfrac{11x+x-30}{2x-5}=\dfrac{12x-30}{2x-5}=\dfrac{6\left(2x-5\right)}{2x-5}=6\)

\(b,\dfrac{3x^2-1}{2x}+\dfrac{x^2+1}{2x}=\dfrac{3x^2-1+x^2+1}{2x}=\dfrac{4x^2}{2x}=2x\)

\(c,\dfrac{3}{2x-5}+\dfrac{-2}{2x+5}+\dfrac{-20}{4x^2-25}=\dfrac{3\left(2x+5\right)}{\left(2x-5\right)\left(2x+5\right)}-\dfrac{2\left(2x-5\right)}{\left(2x-5\right)\left(2x+5\right)}-\dfrac{20}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{6x+15-4x+10-20}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{2x+5}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{1}{2x-5}\)

\(d,\dfrac{x-2}{x-1}+\dfrac{x-3}{x+1}+\dfrac{4-2x^2}{x^2-1}=\dfrac{\left(x-2\right)\left(x+1\right)+\left(x-3\right)\left(x-1\right)+4-2x^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+x-2+x^2-3x-x+3+4-2x^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5x+5}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5}{x-1}\)

\(e,\dfrac{x+1}{x-1}+\dfrac{1-x}{x+1}+\dfrac{4}{x^2-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+2x+1-x^2+2x-1+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\)