Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(27x^3-54x^2+36x=8\)
\(\Rightarrow27x^3-54x^2+36x-8=0\)
\(\Rightarrow\left(3x\right)^3-3.\left(3x\right)^2.2+3.3x.2^2-2^3=0\)
\(\Rightarrow\left(3x-2\right)^3=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow3x=2\)
\(\Rightarrow x=\dfrac{2}{3}\)
(2x-5)^2-(5+2x)^2=0
<=>(2x-5-5-2x)(2x-5+5+2x)=0
<=>(-10).(4x)=0
<=>(-40x)=0
<=>x =0
27x^3-54x^2+36x=8
<=>27x^3-54x^2+36x-8=0
<=>(3x-2)^3=0
<=>3x-2=0
<=>3x=2
<=>x=2/3
\(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Rightarrowđcpm\)
a²+b²+c²+3=2(a+b+c)
=>a²-2a+1+b²-2b+1+c²-2c+1=1
=>(a-1) ² +(b-1) ² +(c-1) ²=1
=>a=b=c=1 dpcm
\(\left(1-2x\right)^2=\left(3x-2\right)^2\)
\(=\left(1-2x\right)^2-\left(3x-2\right)^2=0\)
\(\left(1-2x-3x+2\right)\left(1-2x+3x-2\right)=0\)
\(\left(3-5x\right)\left(x-1\right)=0\)
\(\Rightarrow3-5x=0\) \(x-1=0\)
\(\Rightarrow x=\frac{3}{5}\) or \(x=1\)
b)\(\left(x-2\right)^3+\left(5-2x\right)^3\)
=\(\left(x-2+5-2x\right)\left(\left(x-2\right)^2-\left(x-2\right)\left(5-2x\right)+\left(5-2x\right)^2\right)\)
\(\left(3-x\right)\left(x^2-4x+4-5x+2x^2+10-4x+25-20x+4x^2\right)\)
(\(\left(3-x\right)\left(7x^2-33x+39\right)\)
..............
\(a^2+b^2+c^2+3=2a+2b+2c\)
<=>\(\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
<=>\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Với mọi a;b;c thì \(\left(a-1\right)^2>=0\);\(\left(b-1\right)^2>=0\);\((c-1)^2>=0\)
Do đó \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2>=0\)
Để \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)thì ...(giải tìm a;b;c)
<=>a=b=c=1
Vậy a=b=c=1(đpcm)
Áp dụng BĐT Cauchy ta có:
\(a^2+a+1\ge3a\)
\(b^2+b+1\ge3b\)
\(c^2+c+1\ge3c\)
Cộng 3 vế BĐT lại ta có:
\(a^2+b^2+c^2+\left(a+b+c\right)+3\ge3.\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+3\ge2.\left(a+b+c\right)\)
Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)
Mà theo đề bài ta có:
\(a^2+b^2+c^2+3=2.\left(a+b+c\right)\)
\(a=b=c=1\) ( đpcm )
\(48^2-42^2+64-52^2\)
\(=\left(48^2-52^2\right)-\left(42^2-64\right)\)
\(=\left(48^2-52^2\right)-\left(42^2-8^2\right)\)
\(=\left(48-52\right)\left(48+52\right)-\left(42+8\right)\left(42-8\right)\)
\(=-4\cdot100-50\cdot34\)
\(=-8\cdot50-50\cdot34\)
\(=-50\cdot\left(8+34\right)\)
\(=-50\cdot42\)
\(=-2100\)
Sửa đề: Cho \(a^2+b^2+c^2=m\)
Tính: \(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)
Giải:
Ta có: \(\left(x+y-z\right)^2=\left(x+y\right)^2-2\left(x+y\right).z+z^2=x^2+y^2+z^2+2xy-2xz-2yz\)
Ứng dụng vào bài trên:
\(A=\left[\left(2a\right)^2+\left(2b\right)^2+c^2+2\left(2a\right)\left(2b\right)-2\left(2a\right)c-2\left(2b\right)c\right]\)
\(+\left[\left(2b\right)^2+\left(2c\right)^2+a^2+2\left(2b\right)\left(2c\right)-2\left(2b\right)a-2\left(2c\right)a\right]\)
\(+\left[\left(2c\right)^2+\left(2a\right)^2+b^2+2\left(2c\right)\left(2a\right)-2\left(2c\right)b-2\left(2a\right)b\right]\)
\(=4a^2+4b^2+c^2+8ab-4ac-4bc\)
\(+4b^2+4c^2+a^2+8bc-4ba-4ca\)
\(+4c^2+4a^2+b^2+8ca-4cb-4ab\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
\(=9m\).
Ta có: 352-152 = (35-15)(35+15) = 20.40 = 800
ý b đề đúng hay sai vậy bạn