K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3x^2+3y^2+4xy-2x+2y+2=0

=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0

=>x=1 và y=-1

M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1

10 tháng 2 2022

\(x+y+z=0\\ \Rightarrow\left\{{}\begin{matrix}x=-y-z\\y=-z-x\\z=-x-y\end{matrix}\right.\)

\(\dfrac{xy}{x^2+y^2-z^2}+\dfrac{yz}{y^2+z^2-x^2}+\dfrac{zx}{z^2+x^2-y^2}\)

\(=\dfrac{xy}{x^2+y^2-\left(-x-y\right)^2}+\dfrac{yz}{y^2+z^2-\left(-y-z\right)^2}+\dfrac{zx}{z^2+x^2-\left(-z-x\right)^2}\)

\(=\dfrac{xy}{x^2+y^2-\left(x+y\right)^2}+\dfrac{yz}{y^2+z^2-\left(y+z\right)^2}+\dfrac{zx}{z^2+x^2-\left(z+x\right)^2}\)

\(=\dfrac{xy}{x^2+y^2-x^2-2xy-y^2}+\dfrac{yz}{y^2+z^2-y^2-2yz-z^2}+\dfrac{zx}{z^2+x^2-z^2-2zx-x^2}\)

\(=\dfrac{xy}{-2xy}+\dfrac{yz}{-2yz}+\dfrac{zx}{-2zx}\)

\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}\)

\(=-\dfrac{3}{2}\)

 

AH
Akai Haruma
Giáo viên
15 tháng 10 2023

Bạn xem lại phương trình ban đầu có đúng không vậy?

16 tháng 10 2023

Đè bài nó như thế ák

25 tháng 6 2017