Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không tồn tại số tự nhiên x và y để (x+y)(x-y)=2010
Nếu x+y và x-y cùng là số lẻ thì (x+y)(x-y) là số lẻ => không thỏa mãn đầu bài
Nếu x+y và x-y cùng là số chẵn thì (x+y)(x+y) là số chẵn mà số chẵn có dạng 2k
=> (x+y)(x-y)= 2k.2k=4k => (x+y)(x-y) chia hết cho 4 mà 2010\(⋮̸\)4 nên không thỏa mãn đầu bài
Vậy.....
giả sử tòn tại hai số tự nhiên x và y thỏa mãn (x+y)(x-y)=2010
Xét hiệu: (x+y)-(x-y)=2y chia hết cho 2
suy ra: x+y và x-y cùng tính chẵn lẻ.
mặt khác: (x+y)(x-y)=2010 chia hết cho 2
suy ra: x+y và x-y cùng chẵn
do đó: (x+y)(x-y) chia hết cho 4
lại có: 2010 không chia hết cho 4
suy ra: không tồn tại hai số tự nhiên x và y thỏa mãn đề bài
con có thể kết bạn với cô xong đó cô xẽ liên hệ và gải thích cho con nhé
a) Theo đề bài : ab = 3ab
\(\Rightarrow\) 10a + b = 3ab
\(\Rightarrow\) 10a + b chia hết cho a
\(\Rightarrow\)bchia hết cho a