Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(M+4=\left(\frac{a-d}{d+b}+1\right)+\left(\frac{d-b}{b+c}+1\right)+\left(\frac{b-c}{c+a}+1\right)+\left(\frac{c-a}{d+a}+1\right)\)
\(=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{c+a}+\frac{c+d}{d+a}\)
\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{c+a}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+b\right).\frac{4}{a+b+c+d}+\left(c+d\right).\frac{4}{a+b+c+d}\)
\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)
\(\Rightarrow M+4\ge4\Rightarrow M\ge0\)
vậy min M=0 khi a=b=c=d
mk ko bt viết sigma trên đây :'< bn thông cảm
Đặt \(A=\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)
\(=\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{a+c+d}+\frac{a+b+c+d}{a+b+d}+\frac{a+b+c+d}{a+b+c}-4\)
\(=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\right)-4\)
\(\ge\frac{16\left(a+b+c+d\right)}{3\left(a+b+c+d\right)}-4=\frac{16}{3}-4=\frac{4}{3}\)
Đặt \(B=\frac{b+c+d}{a}+\frac{a+c+d}{b}+\frac{a+b+d}{c}+\frac{a+b+c}{d}\)
\(=\frac{a+b+c+d}{a}+\frac{a+b+c+d}{b}+\frac{a+b+c+d}{c}+\frac{a+b+c+d}{d}-4\)
\(=\left(a+b+c+d\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)-4\ge\frac{16\left(a+b+c+d\right)}{a+b+c+d}-4=12\)
\(\Rightarrow\)\(S=A+B\ge\frac{4}{3}+12=\frac{40}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=d\)
Đặt A là biểu thức cần CM
ví dụ Từ ĐK a + b + c = 3 => a² + b² + c² ≥ 3 ( Tự chứng minh )
Áp dụng BĐT quen thuộc x² + y² ≥ 2xy
a^4 + b² ≥ 2a²b (1)
b^4 + c² ≥ 2b²c (2)
c^4 + a² ≥ 2c²a (3)
Bài làm:
Ta có: \(S=\frac{a-d}{b+d}+\frac{d-b}{c+b}+\frac{b-c}{a+c}+\frac{c-a}{d+a}\)
\(S=\left(\frac{a-d}{b+d}+1\right)+\left(\frac{d-b}{c+b}+1\right)+\left(\frac{b-c}{a+c}+1\right)+\left(\frac{c-a}{d+a}+1\right)-4\)
\(S=\frac{a+b}{b+d}+\frac{c+d}{c+b}+\frac{a+b}{a+c}+\frac{c+d}{d+a}-4\)
\(S=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{c+b}+\frac{1}{d+a}\right)-4\)
\(\ge\left(a+b\right)\frac{\left(1+1\right)^2}{a+b+c+d}+\left(c+d\right)\frac{\left(1+1\right)^2}{a+b+c+d}-4\)
\(=\frac{4\left(a+b\right)}{a+b+c+d}+\frac{4\left(c+d\right)}{a+b+c+d}-4=\frac{4\left(a+b+c+d\right)}{a+b+c+d}-4=4-4=0\)
Dấu "=" xảy ra khi: \(a=b=c=d\)
Vậy \(Min\left(S\right)=0\Leftrightarrow a=b=c=d\)
Học tốt!!!!
Ta có
\(4\left(a+b+c+d\right)^2=\left(\left(a+b\right)+\left(b+c\right)+\left(c+d\right)+\left(d+a\right)\right)^2\)
\(=\left(\frac{\sqrt{a+b}}{\sqrt{b+c+d}}.\sqrt{a+b}.\sqrt{b+c+d}+\frac{\sqrt{b+c}}{\sqrt{c+d+a}}.\sqrt{b+c}.\sqrt{c+d+a}+\frac{\sqrt{c+d}}{\sqrt{d+a+b}}.\sqrt{c+d}.\sqrt{d+a+b}+\frac{\sqrt{d+a}}{\sqrt{a+b+c}}.\sqrt{d+a}.\sqrt{a+b+c}\right)^2\)
\(\le\left(\frac{a+b}{b+c+d}+\frac{b+c}{c+d+a}+\frac{c+d}{d+a+b}+\frac{d+a}{a+b+c}\right)\left(\left(a+b\right)\left(b+c+d\right)+\left(b+c\right)\left(c+d+a\right)+\left(c+d\right)\left(d+a+b\right)+\left(d+a\right)\left(a+b+c\right)\right)\)
\(\Rightarrow VT\ge\frac{4\left(a+b+c+d\right)^2}{\left(\left(a+b\right)\left(b+c+d\right)+\left(b+c\right)\left(c+d+a\right)+\left(c+d\right)\left(d+a+b\right)+\left(d+a\right)\left(a+b+c\right)\right)}\)(1)
Ta chứng minh
\(4\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(\left(a+b\right)\left(b+c+d\right)+\left(b+c\right)\left(c+d+a\right)+\left(c+d\right)\left(d+a+b\right)+\left(d+a\right)\left(a+b+c\right)\right)\left(2\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2-2ac-2bd\ge0\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(đúng)
Từ (1) và (2) ta
\(\Rightarrow\frac{a+b}{b+c+d}+\frac{b+c}{c+d+a}+\frac{c+d}{d+a+b}+\frac{d+a}{a+b+c}\ge\frac{8}{3}\)
Dấu = xảy ra khi a = b = c = d
Đặt \(b+c+d=x;c+d+a=y;a+b+d=z;a+b+c=t\)
Có \(a=\frac{y+z+t-2x}{3}\)
Tương tự :\(b=\frac{x+z+t-2y}{3}\)
\(c=\frac{x+y+t-2z}{3}\)
\(d=\frac{y+x+z-2t}{3}\)
Đặt \(M=\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)
Thay vào biểu thức ta có :
\(M=\frac{\frac{y+z+t-2x}{3}}{x}+\frac{\frac{x+z+t-2y}{3}}{y}+\frac{\frac{x+y+t-2z}{3}}{z}+\frac{\frac{y+x+z-2t}{3}}{t}\)
\(=\frac{1}{3}\left(\frac{y+z+t-2x}{x}+\frac{x+z+t-2y}{y}+\frac{x+y+t-2z}{z}+\frac{x+z+y-2t}{t}\right)\)
\(=\frac{1}{3}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{t}{x}+\frac{x}{t}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)+\left(\frac{t}{y}+\frac{y}{t}\right)+\left(\frac{t}{z}+\frac{z}{t}\right)-8\right]\)
Sử dụng BĐT Cô-si suy ra \(Min_M=\frac{1}{3}.\left(12-8\right)=\frac{4}{3}\)
Dấu bằng xảy ra khi x = y = z = t hay \(b+c+d=a+b+c=c+d+a=b+d+a\) ( tự giải ra a=b=c=d)
Đặt \(N=\frac{b+c+d}{a}+\frac{c+a+d}{b}+\frac{d+a+b}{c}+\frac{a+b+c}{d}\)
\(=\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{d}{a}+\frac{a}{d}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{d}{c}+\frac{c}{d}\right)+\left(\frac{b}{d}+\frac{d}{b}\right)\)
Sử dụng Cô-si ra \(N\ge12\)
Dấu bằng xảy ra khi a=b=c=d ( tự giải ).
Do đó \(S=M+N\ge\frac{4}{3}+12=13\frac{1}{3}\)
Dấu bằng xảy ra khi \(a=b=c=d\)
\(\)
Áp dụng bđt cô - si cho 2 số không âm, ta được:
\(S=\text{ Σ}_{a,b,c,d}\left(\frac{a}{b+c+d}+\frac{b+c+d}{9a}\right)+\text{ Σ}_{a,b,c,d}\frac{8}{9}.\frac{b+c+d}{9a}\)
\(\ge8\sqrt[8]{\frac{a}{b+c+d}.\frac{b}{c+d+a}.\frac{c}{a+b+d}.\frac{d}{a+b+c}}\)\(\sqrt{\frac{b+c+d}{9a}.\frac{c+d+a}{9b}.\frac{a+b+d}{9c}.\frac{a+b+c}{9d}}\)
\(+\frac{8}{9}\left(\frac{b}{a}+\frac{c}{a}+\frac{d}{a}+\frac{c}{b}+\frac{d}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}+\frac{d}{c}+\frac{a}{d}+\frac{b}{d}+\frac{c}{d}\right)\)
\(\ge\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}\)
Đẳng thức xảy ra khi a = b = c = d
nâng cao và phát triển toán 9 tập 1 :)
bài thứ : \(109\left(1\right)\)chuyên đề bất đẳng thức