K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
29 tháng 3 2020
\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
\(=\frac{2n+1+3n-5-4n+5}{n-3}\)
\(=\frac{n+1}{n-3}\)
a) Để A là phân số thì \(n-3\ne0\)
\(\Leftrightarrow n\ne3\)
b) Để A là số nguyên thì \(n+1⋮n-3\)
Ta có n+1=n-3+4
=> 4 \(⋮\)n-3
=> n-3\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta có bảng
n-3 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -1 | 1 | 2 | 4 | 5 | 7 |
29 tháng 3 2020
Đặt \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+3n-5-4n-5}{n-3}=\frac{n-9}{n-3}\)
a) Để A là một phân số thì \(n-3\ne0\)=> \(n\ne3\)
b) Ta có : \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{n-9}{n-3}=\frac{n-3-6}{n-3}=1-\frac{6}{n-3}\)
A có giá trị nguyên <=> \(n-3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
n - 3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
\(A=\frac{2\left(n-3\right)+7}{n-3}+\frac{3\left(n-3\right)+4}{n-3}+\frac{4\left(n-3\right)+7}{n-3}\)
\(A=2+\frac{7}{n-3}+3+\frac{4}{n-3}+4+\frac{7}{n-3}\)
\(A=9+\frac{7+4+7}{n-3}\)
\(A=9+\frac{18}{n-3}\)
=> A là phân số <=> \(\frac{18}{n-3}\)là phân số <=>n - 3 khác Ư ( 18 ) <=> n - 3 khác ( 1 ; -1 ; 2 ; -2 ; .. ;18 ; -18 )
Tự làm nha
b, A thuộc Z <=> \(\frac{18}{n-3}\)l thuộc Z <=> n -3 thuộc Ư ( 18 ) <=<> .....