Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đề có vẻ sai sai nhé :v
b, \(\left|\frac{1}{2}x-\frac{2}{3}\right|-1=\frac{1}{6}\)
\(\Leftrightarrow\left|\frac{1}{2}x-\frac{2}{3}\right|=\frac{7}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-\frac{2}{3}=\frac{7}{6}\\\frac{1}{2}x-\frac{2}{3}=-\frac{7}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{3}\\x=-1\end{cases}}\)
Vậy : ....
c, \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x(x+1)}=\frac{4}{5}\)
\(\Leftrightarrow\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{x\cdot(x+1)}=\frac{4}{5}\)
\(\Leftrightarrow2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{4}{5}\)
\(\Leftrightarrow2\left[\frac{1}{2}-\frac{1}{x+1}\right]=\frac{4}{5}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{10}\)
\(\Leftrightarrow x+1=10\Leftrightarrow x=9\)
Vậy x = 9
\(a)\frac{8}{9}x-\frac{2}{3}=\frac{1}{3}x+1\frac{1}{3}\)
\(\Rightarrow\frac{8}{9}x-\frac{1}{3}x=\frac{2}{3}+1\frac{1}{3}\)
\(\Rightarrow\frac{5}{9}x=\frac{2}{3}+\frac{4}{3}\)
\(\Rightarrow\frac{5}{9}x=2\Rightarrow x=2\div\frac{5}{9}=\frac{18}{5}\)
\(b)(\frac{-2}{5}+\frac{3}{7})-(\frac{4}{9}+\frac{12}{20}-\frac{13}{25})+\frac{7}{35}\)
\(=\frac{1}{35}-(\frac{4}{9}+\frac{3}{5}-\frac{13}{25})+\frac{1}{5}\)
\(=\frac{1}{35}-(\frac{4}{9}+\frac{15}{25}-\frac{13}{25})+\frac{1}{5}\)
\(=\frac{1}{35}-(\frac{4}{9}+\frac{2}{25})+\frac{1}{5}\)
\(=\frac{1}{35}-\frac{118}{25}+\frac{1}{5}\)
Làm nốt
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
\(3.\left(x-\frac{1}{5}\right)-7.\left(\frac{5}{14}-3\right)=20\)
\(3.\left(x-\frac{1}{5}\right)-7.\frac{-37}{14}=20\)
\(3.\left(x-\frac{1}{5}\right)-\frac{-37}{2}=20\)
\(3.\left(x-\frac{1}{5}\right)=20+\frac{-37}{2}\)
\(3.\left(x-\frac{1}{5}\right)=\frac{3}{2}\)
\(x-\frac{1}{5}=\frac{3}{2}:3\)
\(x-\frac{1}{5}=\frac{1}{2}\)
\(x=\frac{1}{2}+\frac{1}{5}\)
\(x=\frac{7}{10}\)
2/3 + 1/2:3x=20/100
1/2:3x=20/100-2/3=-7/15
3x=1/2:-7/15
x=-15/14:3=-5/14
x[1/2-2/3]=7/12
x. -1/6=7/12
x=7/12:-1/6=-3,5