K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

=>2A=2(1/2x4+1/4.6+1/6.8+1/8.10+1/10.12+1/12.14)

=> 2A=2/2.4 + 2/4.6 + 2/6.8 + 2/8.10 + 2/10.12 + 2/12.14

=> 2a =1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7

=> 2A =1-1/7

=>2A=16/17

=> A= 8/17

Mình chắc chắn . Chúc bạn học tốt

\(A=\frac{1}{2.4}\)\(+\frac{1}{4.6}\)\(+\frac{1}{6.8}\)\(+\frac{1}{8.10}\)\(+\frac{1}{10.12}\)\(+\frac{1}{12.14}\)

\(\Rightarrow2A=2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\right)\)

\(\Rightarrow2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{14}=\frac{7}{14}-\frac{1}{14}=\frac{6}{14}\)

\(\Rightarrow2A=\frac{6}{14}\)

\(\Rightarrow A=\frac{3}{14}\)

5 tháng 4 2015

Gọi biều thức trên là A, ta có:

A=(1/2.4+1/4.6+1/6.8+1/8.10+1/10.12)x=2

2A=(2/2.4+2/4.6+2/6.8+2/8.10+2/10.12)x=2

2A=(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)x=2

2A=(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)x=2

2A=(1/2-1/12)x=2

2A=5/12x=2

=>A=5/24x=1

=>x=1:5/24=24/5

 

5 tháng 4 2015

=>1/2.(5/12).x=1

5/24.x=1

x=1:5/24

x=24/5

lưu ý, 1/2.5/12 là tính xong phần 1/2.4 +...+1/10.12 rùi nhé

17 tháng 4 2017

Ta có: 

13 tháng 8 2015

\(\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+\frac{3}{10.12}+\frac{3}{12.14}\)

=\(3.\left(\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\right)\)

=\(\frac{3}{2}.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\right)\)

=\(\frac{3}{2}.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\right)\)

=\(\frac{3}{2}.\left(\frac{1}{4}-\frac{1}{14}\right)\)

=\(\frac{3}{2}.\left(\frac{7}{28}-\frac{2}{28}\right)\)

=\(\frac{3}{2}.\frac{5}{28}=\frac{15}{56}\)

4 tháng 5 2020

\(\sqrt[]{\frac{ }{ }\frac{ }{ }\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}^2}\)

3 tháng 9 2017

\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)

\(2S=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)

\(2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\)

\(2S=\frac{1}{2}-\frac{1}{10}\)

\(2S=\frac{2}{5}\)

\(S=\frac{2}{5}:2\)

\(S=\frac{1}{5}\)

3 tháng 9 2017

S = \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)

=> 2S = \(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)

=> 2S = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\)

=> 2S = \(\frac{1}{2}-\frac{1}{10}=\frac{5}{10}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)

=> S = \(\frac{2}{5}:2=\frac{2}{5}x\frac{1}{2}=\frac{1}{5}\)

22 tháng 1 2017

\(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{298.300}\)

\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{298}-\frac{1}{300}\right)\)

\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{300}\right)=\frac{5}{2}.\frac{37}{150}=\frac{37}{60}\)

28 tháng 3 2019

 \(A=\frac{-1}{2.4}+\frac{-1}{4.6}+\frac{-1}{6.8}+...+\frac{-1}{98.100}\Leftrightarrow.\)\(-2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\Leftrightarrow.\)

\(-2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{100}\Leftrightarrow.\)

\(-2A=\frac{1}{2}-\frac{1}{100}\Leftrightarrow-2A=\frac{49}{100}\Leftrightarrow A=\frac{-49}{200}.\)

ĐÁP SỐ :   \(A=\frac{-49}{200}.\)

28 tháng 3 2019

\(\frac{-49}{200}\)

8 tháng 9 2016

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

  \(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)

  \(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

\(=\frac{4}{9}-\frac{1}{5}\)

\(=\frac{11}{45}\)

 

8 tháng 9 2016

Cảm ơn giúp  bài nữa nha !!

14 tháng 8 2017

Ta có:

\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{1}{4,6}+\frac{1}{6.8}+...+\frac{1}{98.100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{49}{100}=\frac{49}{200}\)

14 tháng 8 2017

Đặt \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(4-2=2;6-4=2;...\)

\(2A=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(2A=\frac{1}{2}-\frac{1}{100}\)

\(2A=\frac{49}{100}\)

8 tháng 8 2017

Ta có:

\(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+\frac{1}{5.7}+\frac{1}{6.8}+\frac{1}{7.9}+\frac{1}{8.10}\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{8}-\frac{1}{10}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}....+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\right)\)

\(=\frac{1}{2}.\frac{8}{9}+\frac{1}{2}.\frac{2}{5}=\frac{1}{2}.\left(\frac{8}{9}+\frac{2}{5}\right)=\frac{1}{2}.\frac{58}{45}=\frac{29}{45}\)

9 tháng 9 2017

29/45 bạn ạ