K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

a) S hình thoi là:

      (19 x 12) : 2 = 114(cm2)

b) S hình thoi là;

      (30 x 7) : 2 = 105(cm2)

Bạn tham khảo lời giải tại đây nha :))

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-b-90-do-va-goc-b-2-goc-c-ke-duong-cao-ah-tren-tia-doi-cua-tia-ba-lay-diem-e-sao

27 tháng 1 2020

cảm ơn nha

11 tháng 2 2019

Đây là các bước để giải hai câu trên bn tham khảo nha:
1. Chứng minh góc BEH = góc ACB.
2. Chứng minh DH = DC = DA.
3. Lấy B' sao cho H là trung điểm của BB'. Chứng minh tam giác AB'C cân.
4. Chứng minh AE = HC

Cho tam giác ABC,góc B 90 độ và góc B = 2 góc C,Kẻ đường cao AH,Trên tia đối của tia BA lấy điểm E sao cho BE = BH,Đường thẳng HE cắt AC tại D,Chứng minh góc BEH = góc ACB,Chứng minh DH = DC = DA,lấy B' sao cho H là trung điểm của BB',Chứng minh tam giác AB'C cân,Chứng minh AE = HC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Chúc bn học tốt~~

11 tháng 2 2019

Cho tam giác ABC,góc B 90 độ và góc B = 2 góc C,Kẻ đường cao AH,Trên tia đối của tia BA lấy điểm E sao cho BE = BH,Đường thẳng HE cắt AC tại D,Chứng minh góc BEH = góc ACB,Chứng minh DH = DC = DA,lấy B' sao cho H là trung điểm của BB',Chứng minh tam giác AB'C cân,Chứng minh AE = HC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Ảnh đây

Hỏi đáp Toán

a) \(BEH\)cân tại \(B\)nên \(\widehat{E}=\widehat{H_1}\)

\(\widehat{ABC}=\widehat{E}+\widehat{H_1}=2\widehat{E}\)

\(\widehat{ABC}=2\widehat{C}\)

\(\Rightarrow\widehat{BEH}=\widehat{ACB}\)

b) Chứng minh được \(\Delta DHC\)cân tại \(D\)nên \(DC=DH\)

\(\Delta DHC\)có :

\(\widehat{DAH}=90^0-\widehat{C}\)

\(\widehat{DHA}=90^0-\widehat{H}_2=90^0-\widehat{C}\)

\(\Rightarrow\Delta DAH\)cân tại \(D\)nên \(DA=DH\)

c) \(\Delta ABB'\)cân tại \(A\)nên :

\(\widehat{B'}=\widehat{B}=2\widehat{C}\)

\(\widehat{B'}=\widehat{A_1}+\widehat{C}\)

\(\Rightarrow2\widehat{C}=\widehat{A_1}+\widehat{C}\)

\(\Rightarrow\widehat{C}=\widehat{A_1}\)

\(\Rightarrow\widehat{AB'C}\)cân tại \(B'\)

d) \(AB=AB'=CB'\)

\(BE=BH=B'H\)

Có : \(AE=AB+BE\)

\(HC=CB'+B'H\)

\(\Rightarrow AE=HC\)

Hình : https://i.imgur.com/k9bNV4d.png