Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\) MTC: \(2x\left(x+3\right)\)
\(=\dfrac{3x}{2x\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)
\(=\dfrac{3x-\left(x-6\right)}{2x\left(x+3\right)}\)
\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)
\(=\dfrac{1}{x}\)
b) \(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x+6}{4-x^2}\)
\(=\dfrac{4}{x+2}+\dfrac{2}{x-2}-\dfrac{5x+6}{x^2-4}\)
\(=\dfrac{4}{x+2}+\dfrac{2}{x-2}-\dfrac{5x+6}{\left(x-2\right)\left(x+2\right)}\) MTC: \(\left(x-2\right)\left(x+2\right)\)
\(=\dfrac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5x+6}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)+2\left(x+2\right)-\left(5x+6\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x-8+2x+4-5x-6}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x-10}{\left(x-2\right)\left(x+2\right)}\)
c) \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
\(=\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}-\dfrac{3x-2}{4x^2-2x}\)
\(=\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}-\dfrac{3x-2}{2x\left(2x-1\right)}\) MTC: \(2x\left(2x-1\right)\)
\(=\dfrac{\left(1-3x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\dfrac{2x\left(3x-2\right)}{2x\left(2x-1\right)}-\dfrac{3x-2}{2x\left(2x-1\right)}\)
\(=\dfrac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)-\left(3x-2\right)}{2x\left(2x-1\right)}\)
\(=\dfrac{2x-1-6x^2+3x+6x^2-4x-3x+2}{2x\left(2x-1\right)}\)
\(=\dfrac{-2x+1}{2x\left(2x-1\right)}\)
\(=\dfrac{-\left(2x-1\right)}{2x\left(2x-1\right)}\)
\(=\dfrac{-1}{2x}\)
d) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(=\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\) MTC: \(\left(x-1\right)\left(x^2+x+1\right)\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2\left(x-2\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x^2+2\right)+2\left(x-2\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+2+2x-4-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-3+x}{\left(x-1\right)\left(x^2+x+1\right)}\)
a) \(x-1-\dfrac{x^2-4}{x+1}=\dfrac{\left(x-1\right)\left(x+1\right)-\left(x^2-4\right)}{x+1}=\dfrac{x^2-1-x^2+4}{x+1}=\dfrac{3}{x+1}\)
b) \(\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{\left(3x-1\right)^2+\left(3x+1\right)^2-12x}{2\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{9x^2-6x+1}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)
c: \(=\dfrac{1}{x-2}-\dfrac{x+4}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x\left(x+2\right)}\)
\(=\dfrac{x\left(x+2\right)-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2+2x-x^2-6x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\)
d: Sửa đề: \(\dfrac{2x^2+1}{x^3+1}-\dfrac{x-1}{x^2-x+1}-\dfrac{1}{x+1}\)
\(=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
a: \(=\dfrac{1-2x+3+2y+2y-4}{6x^3y}=\dfrac{-2x+4y}{6x^3y}=\dfrac{-2\left(x-2y\right)}{6x^3y}=\dfrac{-x+2y}{3x^3y}\)
b: \(=\dfrac{x^2-2+2-x}{x\left(x-1\right)^2}=\dfrac{x\left(x-1\right)}{x\left(x-1\right)^2}=\dfrac{1}{x-1}\)
c: \(=\dfrac{3x+1+x^6-3x}{x^2-3x+1}\)
\(=\dfrac{x^6+1}{x^2-3x+1}\)
d: \(=\dfrac{x^2+38x+4+3x^2-4x-2}{2x^2+17x+1}\)
\(=\dfrac{4x^2+34x+2}{2x^2+17x+1}=2\)
a) Ta có: \(\dfrac{x}{x-1}-\dfrac{2}{x-1}\)
\(=\dfrac{x-2}{x-1}\)
b) Ta có: \(\dfrac{4+4x}{3x^2+6x}+\dfrac{x}{3x+6}\)
\(=\dfrac{4+4x}{x\left(3x+6\right)}+\dfrac{x^2}{x\left(3x+6\right)}\)
\(=\dfrac{x^2+4x+4}{3x\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)^2}{3x\left(x+2\right)}\)
\(=\dfrac{x+2}{3x}\)
c) Ta có: \(\dfrac{x^2-2x}{x-1}\cdot\dfrac{1}{x}:\dfrac{x^2-4}{x^2-2x+1}\)
\(=\dfrac{x\left(x-2\right)}{x-1}\cdot\dfrac{1}{x}\cdot\dfrac{x^2-2x+1}{x^2-4}\)
\(=\dfrac{x-2}{x-1}\cdot\dfrac{\left(x-1\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x-1}{x+2}\)