K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

a.

 Xét tam giác ABH và tam giác CBA có : góc BHA = góc BAC (2 góc = 90 độ )

                                                            góc ABH = góc CBA (2 góc chung )

Suy ra tam giác ABH đồng dạng với tam giác CBA ( trường hợp g.g )

b.

Xét tam giác ABH có BI là phân giác góc ABH suy ra  AI\AH = BA\BH

Suy ra AI.BH = IH . BA

8 tháng 5 2018

a)Xét \(\Delta ABC\)\(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{BHA}\)(=\(90^0\))

\(\widehat{B}\)chung

=>\(\Delta ABC\)~\(\Delta HBA\)(g.g)

=>\(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

=>\(AB^2=HB.BC\) A B C H D

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao

19 tháng 5 2019
https://i.imgur.com/wVfGdQT.jpg
3 tháng 5 2019

a) Xét tam giác HBA và tam giác ABC có

góc H = góc A (=90 độ)

góc ABC chung

suy ra tam giác HBA đồng dạng với tam giác ABC

b) Áp dụng định lyd Pi ta go vào tam giác vuông ABC có

BC^2= AB^2+AC^2

BC^2=12^2+16^2

BC^2 = 400

BC=căn 400 = 20 cm

+ Ta có tam HBA đồng dạng vs tam giác ABC (cmt)

suy ra HA/AC=BA/BC(t/c 2 tam giác đồng dạng)

suy ra HA/16=12/20

SUY RA HA=(16*12)/20 =9,6cm

c) ta có DE là tia phân giac

suy ra AE/EB=AD/BD 1

VÌ DF là tia p/g

suy ra FC/FADC/AD 2

TỪ 1,2 suy ra EA/EB *DB/DC*EC/FA

suy ra EA/EB*DB/DC*FC/FA =1(đfcm)

3 tháng 5 2019
https://i.imgur.com/uPsEWVL.png
20 tháng 5 2019

a) Xét \(\Delta HBA\)và \(\Delta ABC\)có :

\(\widehat{AHB}=\widehat{BAC}=90^o;\widehat{B}\left(chung\right)\)

\(\Rightarrow\)\(\Delta HBA\)\(\approx\)\(\Delta ABC\)( g.g )

b) Xét \(\Delta HBA\)và \(\Delta HAC\)có :

\(\widehat{AHB}=\widehat{AHC}=90^o\)

\(\widehat{BAH}=\widehat{ACH}\left(cung-phu-\widehat{B}\right)\)

\(\Rightarrow\Delta HBA\approx\Delta HAC\left(g.g\right)\)

\(\Rightarrow\frac{BH}{AH}=\frac{AH}{HC}\Rightarrow AH^2=BH.HC\)

27 tháng 2 2018

a. Xét tam giác ABC có:

AC2 + AB2 = 122 +92 = 144 + 81 =225 (cm)

BC2 = 152 = 225 (cm)

Suy ra: AC2 + AB2 = BC2

=> Tam giác ABC vuông tại A

b.

Ta có AD là phân giác của góc B

=> \(\dfrac{DA}{DC}=\dfrac{BA}{BC}\) ( Tính chất đường phân giác trong tam giác)

\(\Leftrightarrow\dfrac{DA}{DC}=\dfrac{9}{15}=\dfrac{3}{5}\)

\(\Rightarrow\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{3}{2}\)

Suy ra: \(\dfrac{DA}{3}=\dfrac{3}{2}\Rightarrow DA=\dfrac{3.3}{2}=4,5\)

\(\dfrac{DC}{5}=\dfrac{3}{2}\Rightarrow DC=\dfrac{5.3}{2}=7,5\)

Vậy: DA = 4,5 (cm) và DC = 7,5(cm)