K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2015

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{y+x+t}=\frac{t}{x+y+z}=\frac{x+y+z+t}{2\left(x+y+z+t\right)}=\frac{1}{2}\)

=>2x=y+z+t

2y=x+z+t

2z+x+y+t

2t=x+y+z

=>x+y=2(z+t)(1)

y+z=2(x+t)(2)

z+t=2(x+y)(3)

t+x=2(y+z)(4)

Thay 1;2;3 và 4 vào P

=>P=2+2+2+2=8

bài 2 tương tự

 

19 tháng 3 2016

ác mộng sai rồi

10 tháng 1 2017

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)

*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)

\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)

*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)

10 tháng 1 2017

a)

Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)

Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thế (1) vào biểu thức B

\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)

\(\Rightarrow B=2.2.2=8\)

Vậy biểu thức \(B=8\)

29 tháng 6 2018

Ta có \(\frac{2a+b+c}{b+c}=\frac{2b+c+a}{c+a}=\frac{2c+a+b}{a+b}\Rightarrow\frac{2a}{b+c}+1=\frac{2b}{a+c}+1=\frac{2c}{a+b}+1\)

=> \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{3}{2}\)

^_^ 

21 tháng 12 2018

Bài 1: Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=k\)

\(\Rightarrow\hept{\begin{cases}a=2016k\\b=2017k\\c=2018k\end{cases}}\).Thay vào M,ta có:

 \(M=4\left(2016k-2017k\right)\left(2017k-2018k\right)-\left(2018k-2016k\right)^2\)

\(=4.\left(-1k\right)\left(-1k\right)-\left(2k\right)^2\)

\(=4k^2-4k^2=0\)

11 tháng 1 2017

b) Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\)

\(\Rightarrow x=15k,y=20k,z=24k\)

Lại có: \(M=\frac{2x+3y+4z}{3x+4y+5z}=\frac{2\left(15k\right)+3\left(20k\right)+4\left(24k\right)}{3\left(15k\right)+4\left(20k\right)+5\left(24K\right)}=\frac{30k+60k+96k}{45k+80k+120k}\)

\(=\frac{186k}{245k}=\frac{186}{245}\)

Vậy \(M=\frac{186}{245}\)

11 tháng 1 2017

b) Vì \(\frac{x}{3}\) = \(\frac{y}{4}\)\(\frac{y}{5}\) = \(\frac{z}{6}\)

nên \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{24}\)

Đặt \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{24}\) = k

=> x = 15k; y = 20k và z = 24k

Thay vào M ta được:

M = \(\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}\)

= \(\frac{30k+60k+96k}{45k+50k+120k}\)

= \(\frac{k\left(30+60+96\right)}{k\left(45+50+120\right)}\)

= \(\frac{k.186}{k.215}\) = \(\frac{186}{215}\)

Vậy M = \(\frac{186}{215}\).

2 tháng 12 2019

Chiều mai mình nộp ạ

19 tháng 6 2019

1)

\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{8}=2\Rightarrow x=16\\\frac{y}{12}=2\Rightarrow x=24\\\frac{z}{15}=2\Rightarrow z=30\end{matrix}\right.\)

2)

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)

xy=10 <=> 2k.5k=10

<=>10k2=10

<=> k=1

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

3)

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)

\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)