Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính A=\(1+2^2+2^3+..+2^{99}\)
=> 2A-A=A=\(\left(2+2^2+2^3+..+.2^{100}\right)-\left(1+2+2^2+..+2^{99}\right)=2^{100}-1\)
ta có B= \(5.4^4< 8.4^4=2^{11}< 2^{100}-1\)
=> A>B
Ta có : A=1+2+2^2+2^3+...+2^99
2A=2^2+2^3+2^4+...+2^100
A=2^100-1
\(\Rightarrow A=\frac{\left(2011^{2011}-3\right)+3}{2011^{2011}-3}=1+\frac{3}{2011^{2011}-3}\)
\(\Rightarrow B=\frac{2011^{2011}-1+3}{2011^{2011}-1}=1+\frac{3}{2011^{2011}-1}\)
Vì 20112011 - 3 < 20112011 - 1 =>\(\frac{3}{2011^{2011}-3}>\frac{3}{2011^{2011}-1}\)
\(\Rightarrow1+\frac{3}{2011^{2011}-3}>1+\frac{3}{2011^{2011}-1}\) hay A > B
Xét bài toán :
So sánh \(\frac{a}{b}\)và \(\frac{a+m}{b+m}\)( a>b , m>0)
Có \(\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)
\(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)}\)
Mà a>b => am > bm => \(\frac{ab+am}{b\left(b+m\right)}>\frac{ab+bm}{b\left(b+m\right)}\)hay \(\frac{a}{b}>\frac{a+m}{b+m}\)
Áp dụng : \(A=\frac{3^{2017}+5}{3^{2015}+5}>\frac{3^{2017}+5+4}{3^{2015}+5+4}=\frac{3^{2017}+9}{3^{2015}+9}=\frac{3^2\left(3^{2017}+9\right)}{3^2\left(3^{2015}+9\right)}\)
\(=\frac{3^{2015}+1}{3^{2013}+1}=B\)
=> A > B
\(A=1+2012^1+2012^2+....+2012^{72}\\ \Rightarrow2012A=2012+2012^2+....+2012^{73}\\ \Rightarrow2011A=2012^{73}-1\\ \Rightarrow A=\frac{2012^{73}-1}{2011}\)
=> A<B
sẽ khác nhau