K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2015

Vì chữ số tận cùng của 51 là 1 khi nâng lên luỹ thừa n thì chữ số tận cùng không thay đổi

Vì số 47 có tận cùng là 7 khi nâng lên lũy thừa bậc 4n+2 thì chữ số tận cùng là 9.

Vậy chữ số tận cùng của A là : .....1+.....9=.......0 =>chia hết cho 10

22 tháng 7 2016

a)101234+2)=10+2=12

Vì 12 chia hết cho 3 nên (101234+2)chia hết cho 3

b)(10789+8)=10+8=18

Vì 18 chia hết 9 nên (10799+8) chia hết cho 9

7 tháng 11 2015

1033+8=10...000(33 chữ số 0)+8=10...008(32 chữ số 0) có:

+) Chữ số tận cùng 8 chia hết cho 2

+) Tổng các chữ số: 1+0+...+0+0+8=1+8=9 chia hết cho 9

Mà 2 & 9 nguyên tố cùng nhau

=> 1033+8 chia hết cho 18(2.9=18)

=> đpcm

7 tháng 11 2015

a)1033 + 8 = 1000......00008 (có 32 chữ số 0)

Phân tích:

18 = 2.9

Tận cùng là 8 => chia hết cho 2

Tổng các chữ số là 9 => chia hết cho 9

=> chia hết cho 18

b, 10^10 + 14

=100...00+14 (10 số 0)

=10...014(8 số 0)

Tận cùng là 4 nên chia hết cho 2 (1)

Tổng các chữ số là : 1+1+4=6 chia hết cho 3 (2)

Từ (1) và (2) => 10^10 + 14 chia hết cho 6

l i k e nha !

9 tháng 10 2017

a ) Ta có :

10có 7 số 0 và 1 số 1

Nên khi cộng thêm 5 ta có tổng các chữ số là :

1 + 5 = 6\(⋮\)3

Vì : 107 + 5 có số cuối là 5 nên\(⋮\)5

=> 107 + 5\(⋮\)3 và 5

b ) Ta có :

10m + 8 chẵn

=> 10m + 8\(⋮\)2

Ta có :

10m + 8 có tổng\(⋮\)9

=> 10m + 8\(⋮\)2 và 9

4 tháng 8 2015

1, 

a, Ta có: A = 2 + 22 + 23 +.......+ 210

= ( 2 + 22 ) + ( 23 + 24 ) +...... + ( 29 + 210 )

= 6 + 23 . ( 2 + 22 ) +... + 29 . ( 2 + 22 )

= 6 + 23 . 6 + ......... + 29 . 6

= 6 . ( 2 + 22 + 23 +......+ 29 ) chia hết cho 3 ( Vì 6 chia hết cho 3, nên 6k chia hết cho 3 )

=>   A chia hết  cho 3

b, Tương tự ta làm tiếp với ý b

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.