Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=27x^3+27x^2+9x+1\)
\(b,=\dfrac{x^3}{27}-\dfrac{x^2}{3}+x-1\)
\(c,=-\left(27x^3-27x^2y^2+9xy^4-y^6\right)\)
\(=-27x^3+27x^2y^2-9xy^4+y^6\)
\(d,=\dfrac{x^3}{y^3}-\dfrac{6x}{y}+\dfrac{12y}{x}-\dfrac{8y^3}{x^3}\)
a) \(\left(3x+1\right)^3=27x^3+27x^2+9x+1\)
b) \(\left(\dfrac{x}{3}-1\right)^3=\dfrac{x^3}{27}-\dfrac{x^2}{3}\)
c) \(\left(-y^2+3x\right)^3=27x^3-27x^2y^2+9xy^4-y^6\)
d) \(\left(\dfrac{x}{y}-\dfrac{2y}{x}\right)^3=\dfrac{x^3}{y^3}-\dfrac{6x}{y}+\dfrac{12y}{x}-\dfrac{8y^3}{x^3}\)
Bài 2:
a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)
\(=2x^3+6x\)
b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(=27x-55\)
a: \(\left(3x+2\right)^2-\left(3x-2\right)^2=5x+38\)
=>\(9x^2+12x+4-\left(9x^2-12x+4\right)-5x-38=0\)
=>\(9x^2+7x-34-9x^2+12x-4=0\)
=>19x-38=0
=>19x=38
=>x=38/19=2
b: \(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
=>\(x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\)
=>\(x^3+3x^2+12x-9=x^3+3x^2+3x+1\)
=>12x-9=3x+1
=>12x-3x=1+9
=>9x=10
=>x=10/9
\(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(B=x^3-9x^2+27x-27-\left(x^3-3x^2+9x+3x^2-9x+27\right)+\left(9x^2-1\right)\)
\(B=x^3-9x^2+27x-27-\left(x^3+27\right)+9x^2-1\)
\(B=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(B=27x-55\)
b: \(x^3+\dfrac{1}{27}=\left(x+\dfrac{1}{3}\right)\left(x^2-\dfrac{1}{3}x+\dfrac{1}{9}\right)\)
c: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
e: \(a^2y^2-2axby+b^2x^2\)
\(=\left(ay\right)^2-2\cdot ay\cdot bx+\left(bx\right)^2\)
\(=\left(ay-bx\right)^2\)
f: \(100-\left(3x-y\right)^2\)
\(=\left(10-3x+y\right)\left(10+3x-y\right)\)
g: \(64x^2-\left(8a+b\right)^2\)
\(=\left(8x\right)^2-\left(8a+b\right)^2\)
\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)
a: Ta có: \(3x-\left(3x+2\right)=x+3\)
\(\Leftrightarrow x+3=-2\)
hay x=-5
b: Ta có: \(\dfrac{5x-1}{4}+\dfrac{2x-1}{3}=\dfrac{3x}{2}\)
\(\Leftrightarrow15x-3+8x-4=18x\)
\(\Leftrightarrow5x=7\)
hay \(x=\dfrac{7}{5}\)
\(A=\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
\(=\left[\left(3x^3+1\right)+3x\right]\left[\left(3x^3+1\right)-3x\right]-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1\right)^2-\left(3x\right)^2-\left(3x^3+1\right)^2\)
\(=-\left(3x\right)^2\)
\(=-9x^2\)
`a, (3x-1)^3-(3x+1)^3`
`= (3x-1-3x-1)(9x^2-6x+1+9x^2-1+9x^2+6x+1`
`= (-2)(27x^2 +1)`
`= -54x^2-2`.
`b, (1+3x)^3 - (1-3x)^3`
`= 1+ 9x + 27x^2 + 27x^3 - 1 + 9x - 27x^2 + 27x^3`
`= 54x^3 + 18x`.
`c, = 54x^3 + 18x -1 +9x^2`.
a: =27x^3-27x^2+9x-1-27x^3-27x^2-9x-1
=-54x^2-2
b: =27x^3+27x^2+9x+1-27x^3+27x^2-9x+1
=54x^2+2
c: =54x^2+2+(3x-1)(3x+1)
=54x^2+2+9x^2-1
=63x^2+1