K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 3 2023

Nếu a;b;c cùng lẻ \(\Rightarrow a^2+b^2+c^2\) lẻ, mà 1386 chẵn nên ko thỏa mãn

\(\Rightarrow\) Trong 3 số a;b;c phải có ít nhất 1 số chẵn, không mất tính tổng quát, giả sử c chẵn. Mà c là số nguyên tố \(\Rightarrow c=2\)

\(\Rightarrow a^2+b^2+4=1398\Rightarrow a^2+b^2=1394\)

Mặt khác một số chính phương chia 5 chỉ có các số dư 0,1,4

Mà \(1394\) chia 5 dư 4 \(\Rightarrow a^2+b^2\) chia 5 dư 4

\(\Rightarrow\) Trong 2 số \(a^2\) và \(b^2\) một số chia 5 dư 0, một số chia 5 dư 4

Hay trong 2 số a và b phải có 1 số chia hết cho 5

Giả sử b chia hết cho 5 \(\Rightarrow b=5\)

\(\Rightarrow a^2+25=1394\Rightarrow a=37\)

Vậy \(\left(a;b;c\right)=\left(37;5;2\right);\left(37;2;5\right);\left(2;5;37\right);\left(2;37;5\right);\left(5;2;37\right);\left(5;37;2\right)\)

29 tháng 3 2023

đề bài là 1398 mà sao trong lới giải lại có 1398 vậy ạ

26 tháng 7 2016

ta biết rằng bình phương của một số nguyên hoặc chia hết cho 3 hoặc chia 3 dư 1 

* Nếu a, b, c không có số nào là 3 
=> a² chia 3 dư 1 ; b² chia 3 dư 1; c² chia 3 dư 1 
=> a²+b²+c² chia hết cho 3 vô lí do gt nguyên tố và hẳn nhiên a²+b²+c² > 3 

* Hơn nữa còn thấy không thể có số 2, vì nếu có 1 số là 2, 2 số còn lại là lẻ 
=> a²+b²+c² chẳn => không nguyên tố 

*Vậy phải có 1 số là 3, và không có số 2 => 3 số ng tố liên tiếp chỉ có thể là 3,5,7 
Kiểm tra lại: 3²+5²+7² = 83 nguyên tố 

Vậy 3 số cần tìm là: 3, 5, 7 

26 tháng 7 2016

Nếu a,b,c =2;3;5 =>a2+b2+c2=38 ( loại )

Nếu a;b;c =3;5;7 => a2+b2+c2 là số nguyên tố ( chọn )

Nếu a;b;c nguyên tố >3

=>a2+b2+c2đồng dư 3 ( mod 3)

=>a2+b2+c2 đồng dư 0 ( mod 3) nên là hợp số

Vậy  (a;b;c)=(3;5;7)

15 tháng 11 2015

Các bộ ba chữ số nguyên tố liên tiếp có thể là (2;3;5); (3;5;7)

Tính 22 + 3+ 5= 4 + 9 + 25 = 38 là hợp số => Loại

Tính 32 + 52 + 7= 9 + 25 + 49 = 83 là số nguyên tố 

Vậy bộ ba số đó là 3;5; 7

16 tháng 5 2016

Không có a,b,c thỏa mãn điều kiện.

  Vì:

Giả sử a2=B.=>B:a=a.

=>Ư(B)={1;a;B}

Mà số nguyên tố là số chỉ có ước là 1 & chính nó(B)

3 tháng 1 2015

Bài 1: n có 4 chữ số dạng 20ab => 20ab + 2 + a +b=2013 => 11a+b=11

a=0 => b=11(loại)

a=1 => b=0 => n=2010

với n<2000 => tổng các chữ số của n lớn nhất là: 1+9+9+9=28 => n  ≥ 2013-28=1985

xét n có dạng 19ab: 19ab+1+9+a+b=2013 => 11a+b=103

do n ≥ 1985 => a ≥ 8

a=8 => b=7,5 (loại)

a=9 => b=2 => n=1992

3 tháng 1 2015

Bài 2: Chắc là hợp số :D

từ \(a^2+b^2+c^2=e^2+f^2+d^2\)

=> \(a^2+b^2+c^2\text{ ≡}d^2+e^2+f^2\)(mod 2)

=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)\)  ≡ \(d^2+e^2+f^2+2\left(de+ef+fd\right)\)(mod 2)

=>\(\left(a+b+c\right)^2\text{ ≡}\left(d+e+f\right)^2\) (mod 2)

=>a+b+c ≡ d+e+f (mod 2)

=> a+b+c+d+e+f chia hết cho 2

17 tháng 3 2016

theo mình là hợp số 

5 tháng 7 2016

Xét hiệu\(\left(a^2+b^2+c^2+d^2+e^2\right)-\left(a+b+c+d+e\right)=\)

13 tháng 2 2020

Câu hỏi của Lê Linh An - Toán lớp 6 - Học toán với OnlineMath

28 tháng 2 2020

Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)

\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)

\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)

Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)

\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)

Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)

  \(\implies\)  \(a+b+c+d\) chia hết cho \(2\)

Mà \(a+b+c+d\) \(\geq\)   \(4\)  \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\) 

9 tháng 12 2016

TÍNH:1999^2000:(1999^1999+1999^1999) giúp giải với