Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3 + b3 + c3 = a2 + b2 + c2 = 1
\(\Rightarrow\)a2 ( 1 - a ) + b2 ( 1 - b ) + c2 ( 1 - c ) = 0 ( 1 )
Mà a2 + b2 + c2 = 1 \(\Rightarrow\)| a | \(\le\)1, | b | \(\le\)1 , | c | \(\le\)1
\(\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}a^2\left(1-a\right)\ge0\\b^2\left(1-b\right)\ge0\\c^2\left(1-c\right)\ge0\end{cases}}\)
\(\Rightarrow\)a2 ( 1 - a ) + b2 ( 1 - b ) + c2 ( 1 - c ) \(\ge\)0 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\hept{\begin{cases}a^2\left(1-a\right)=0\\b^2\left(1-b\right)=0\\c^2\left(1-c\right)=0\end{cases}}\)
( a,b,c ) là hoán vị của ( 0 ; 0 ; 1 )
Vậy S = 1
a) Có:
\(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)
\(\left(a^2+b^2\right)^3=a^6+3a^2b^2\left(a^2+b^2\right)+b^6=a^6+b^6+3a^2b^2=1\) \(\left(a^3+b^3\right)^2=a^6+2a^3b^3+b^6=1\) =>3a2b2=2a3b3 <=> a2b2(2ab-3)=0 <=> a=0 hoặc b=0 hoặc 2ab=3 Nếu a=0=> b2=1 và b3=-1 => b=-1 => S=-1 Nếu b=0=> a2=1 và a3=-1 => a=-1 => S=1 Nếu 2ab=3 => (a-b)2=-2 => không thỏa mãn Vậy .....
\(S=\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)
\(S=\frac{a^2}{a^2+2ab}+\frac{b^2}{b^2+2bc}+\frac{c^2}{c^2+2ca}\)
\(S\ge\frac{\left(a+b+c\right)^2}{a^2+2ab+b^2+2bc+c^2+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
\(S_{min}=1\) khi \(a=b=c=1\)
GTNN của S hoàn toàn không cần đến điều kiện \(abc=1\), nó luôn bằng 1 với mọi số thực dương a;b;c (nên điều kiện \(abc=1\) là thừa)
Do \(x^{2016}+y^{2016}+z^{2016}=1\Rightarrow\left\{{}\begin{matrix}0\le x^{2016}\le1\\0\le y^{2016}\le1\\0\le z^{2016}\le1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^{2017}\le x^{2016}\\y^{2017}\le y^{2016}\\z^{2017}\le z^{2016}\end{matrix}\right.\)
\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le x^{2016}+y^{2016}+z^{2016}\)
\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le1\)
Đẳng thức xảy ra khi vả chỉ khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị
\(\Rightarrow P=1\)
Gọi \(d=ƯC\left(m^2+n^2;m+n\right)\)
\(\Rightarrow\left(m+n\right)^2-\left(m^2+n^2\right)⋮d\Rightarrow2mn⋮d\)
TH1: \(2⋮d\Rightarrow d_{max}=2\) khi \(m;n\) cùng lẻ
TH2: \(m⋮d\) , mà \(m+n⋮d\Rightarrow n⋮d\)
\(\Rightarrow d=ƯC\left(m;n\right)\Rightarrow d=1\)
Th3: \(n⋮d\) tương tự như trên ta có \(d=1\)
Vậy ước chung lớn nhất A; B bằng 2 khi m; n cùng lẻ
\(a^2+b^2+c^2=1\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le1\Rightarrow a;b;c\le1.\)
\(a^3+b^3+c^3=a^2+b^2+c^2\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)
Do \(a;b;c\le1\) nên \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}a^2+b^2+c^2=1\\a;b;c\in\left\{0;1\right\}\end{cases}\Leftrightarrow\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;0\right);\left(1;0;0\right)}\)