Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)+\left(x+5\right)+\left(x+9\right)+...+\left(x+29\right)=136\)\(136\)
\(x+1+x+5+x+9+...+x+29=136\)
\(29.x+\left(1+2+3+4+...+29\right)=136\)
\(29.x+\left[\left(29+1\right).29:2\right]=136\)
\(29.x+435=136\)
\(29.x=136-435=-299\)
\(x=\frac{-299}{29}\)
Phần còn lại bn cứ làm tương tự như thek nha!
Gợi ý nè , phần còn lại có 998 x
Nhớ k cho mk nha!
Ta có:
a) ( x + 1 ) + ( x + 5 ) + ( x + 9 ) +...+ ( x + 29 ) = 136
=> x + 1 + x + 5 + x + 9 +...+ x + 29 = 136
=> ( x + x + x +...+ x ) + ( 1 + 5 + 9 +...+ 29 ) = 136
=> 8x + 120 = 136
=> x = ( 136 - 120 ) : 8 = 2
b) ( y + 2 ) + ( y + 4 ) + ( y + 6 ) +.....+ ( y + 1996 ) = 998 000
=> y + 2 + y + 4 + y + 6 +....+ y + 1996 = 998 000
=> ( y + y + y + .... + y ) + ( 2 + 4 + 6 + .... + 1996 ) = 998 000
=> 998y + 997 002 = 998 000
=> y = ( 998 000 - 997 002 ) : 998
=> y = 1
a)
HD các số hạng y+2 ; y+4 ;........ ; y+1996 lập thành 1
dãy số cách đều với khoảng cách là 2.
Từ y+2 đến y+1996 có: (1996-2) : 2+ 1=998(số hạng)
Tổng các số vế trái :
( y+2) +(y+4) +.....+(y+1996)= ( y+2 +y+1996) x998 : 2=
(2y x +1998) x998 : 2
Vậy ta có ( 2 y x+1998) x998 :2 =1998
b)\(\frac{10y+17}{5y-5}=\frac{11}{1}\Rightarrow\left(10y+17\right)1=\left(5y-5\right)11\)
\(\Rightarrow1,6\)
bài 2 tìm x
a,106- ( x+ 7) =9
x+7 = 106 - 9
x+7 = 107
x= 107 - 7
x=100
b, 2 x ( x+ 4) + 5 =65
2 x (x+4) = 65 - 5
2 x (x+4) = 60
x+4 = 60:2
x+4= 30
x= 30 - 4
x=26
c, (16x x -32) x 45=0
16 x X - 32 = 0: 45
16 x X - 32 =0
16 x X = 0 + 32
16 x X = 32
X= 32:16
X=2
d, x+4 x x = 100 : 5
X + 4 x X = 20
(1+4) x X = 20
5 x X = 20
X= 20:5
X=4
Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{18.19}+\frac{2}{19.20}\)
\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(A=2\left(1-\frac{1}{20}\right)\)
\(A=2.\frac{19}{20}=\frac{19}{10}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\left(1-\frac{1}{20}\right)\)
\(=2.\frac{19}{20}\)
\(=\frac{19}{10}\)
1.
c. \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
2.
a. \(45-5\left(y+1\right)=10\)
\(\Rightarrow5\left(y+1\right)=35\)
\(\Rightarrow y+1=7\)
\(\Rightarrow y=6\)
b. \(y:2+y:2=15\)
\(\Rightarrow\frac{1}{2}y+\frac{1}{2}y=15\)
\(\Rightarrow y=15\)
Bài 1 :
\(a,12,5\times32\times8\)
\(=\left(12,5\times8\right)\times32\)
\(=100\times32\)
\(=3200\)
\(b,20,9+20,9\times99\)
\(=20,9\times\left(1+99\right)\)
\(=20,9\times100\)
\(=2090\)
\(c,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{50}{50}-\frac{1}{50}\)
\(=\frac{49}{50}\)
Bài 2 :
\(a,45-5\times\left(y+1\right)=10\)
\(5\times\left(y+1\right)=45-10\)
\(5\times\left(y+1\right)=35\)
\(y+1=35\div5\)
\(y+1=7\)
\(y=7-1\)
\(y=6\)
\(b,y\div2+y\div2=15\)
\(y\times\frac{1}{2}+y\times\frac{1}{2}=15\)
\(2\times\left(y\times\frac{1}{2}\right)=15\)
\(y=15\)
Học tốt
a) 3/7 + 4/9 + 4/7 + 5/9
= ( 3/7 + 4/7 ) + ( 4/9 + 5/9 )
= 7/7 + 9/9
= 1 + 1
= 2
b)1/5 + 4/10 + 9/15 + 16/20 + 25/25 + 36/30 + 49/35 + 64/40 + 81/45
= 1/5 + 2/5 + 3/5 + 4/5 + 5/5 + 6/5 + 7/5 + 8/5 + 9/5
= ( 1/5 + 9/5 ) + ( 2/5 + 8/5 ) + (7/5 + 3/5 ) + ( 4/5 + 6/5 ) + 5/5
= 2 + 2 + 2 + 2 + 1
= 2 x 4 + 1
= 8 +1
= 9
c) 1/8 + 1/12 + 3/8 + 5/12
= ( 1/8 + 3/8 ) + ( 1/12 + 5/12)
= 4/8 + 6/12
= 1/2 + 1/2
= 2/4 = 1/2
mỏi tay rồi
d; (1 - \(\dfrac{1}{2}\)) x (1 - \(\dfrac{1}{3}\)) x (1 - \(\dfrac{1}{4}\)) x ... x ( 1 - \(\dfrac{1}{100}\))
= \(\dfrac{1}{2}\) x \(\dfrac{2}{3}\) x \(\dfrac{3}{4}\) x \(\dfrac{3}{4}\) x ... x \(\dfrac{99}{100}\)
= \(\dfrac{1}{100}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2.\left(1-\frac{1}{20}\right)\)
\(=2.\frac{19}{20}=\frac{19}{10}\)
\(\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{19\cdot20}\)
\(=2\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)
\(=2\cdot\left(1-\dfrac{1}{20}\right)\)
\(=2\cdot\dfrac{19}{20}\)
\(=\dfrac{19}{10}\)