Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}=\dfrac{a-c}{2016-2018}=\dfrac{a-b}{2016-2017}=\dfrac{b-c}{2017-2018}\)
\(\rightarrow\dfrac{a-c}{-2}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}\)
\(\rightarrow a-c=2\cdot\left(a-b\right)=2\cdot\left(b-c\right)\)
\(\rightarrow\left(a-c\right)^3=\left[2\cdot\left(a-b\right)\right]^2\cdot2\cdot\left(b-c\right)\)
\(\Rightarrow\left(a-c\right)^3=8\cdot\left(a-b\right)^2\cdot\left(b-c\right)\)
Sửa đề: Chứng minh: \(4\left(a-b\right)\left(b-c\right)=4\left(b-c\right)^2\)
Đặt \(\dfrac{a}{2017}=\dfrac{b}{2018}=\dfrac{b}{2019}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=2017k\\b=2018k\\c=2019k\end{matrix}\right.\)
VT: \(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(2018k-2019k\right)\)
\(=4.\left(-k\right).\left(-k\right)=4k^2\) (1)
VP: \(4\left(b-c\right)^2=4\left(2018k-2019k\right)^2=4k^2\) (2)
Từ (1) và (2), suy ra:
\(4\left(a-b\right)\left(b-c\right)=4\left(b-c\right)^2\)\(\Rightarrow\) (đpcm)
~ Học tốt ~
Đặt a/2016=b/2017=c/2018=k
=>a=2016k; b=2017k; c=2018k
(a-c)^3=(2016k-2018k)^3=(-2k)^3=-8k^3
8(a-b)^2*(a-b)
=8(a-b)^3
=8(2016k-2017k)^3
=-8k^3
=(a-c)^3
a: Ta có: \(A=2018^2-2017^2=2018+2017\)
\(B=2017^2-2016^2=2017+2016\)
mà 2018>2016
nên A>B
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=1\Leftrightarrow a=b\\\dfrac{b}{c}=1\Leftrightarrow b=c\\\dfrac{c}{a}=1\Leftrightarrow c=a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow A=\dfrac{a^{2017}\cdot a^{2018}}{c^{4035}}=\dfrac{a^{2017}\cdot a^{2018}}{a^{4035}}=\dfrac{a^{4035}}{a^{4035}}=1\)