Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)
\(A=1+\frac{4}{\sqrt{x}-3}\)
để \(A\in Z\)thì \(\frac{4}{\sqrt{x}-3}\in Z\)
\(\Leftrightarrow\sqrt{x}-3\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1;\pm2;\pm4\right\}\)
đến đây xét từng trường hợp rồi đối chiếu điều kiện là xong
a, A >= 0
Dấu "=" xảy ra <=> x=0
Vậy GTNN của A = 1 <=> x=0
b, B >= 1/2
Dấu "=" xảy ra <=> x=0
Vậy GTNN của B = 1/2 <=> x=0
Tk mk nha
Câu a)
Ta có: \(A=\sqrt{x}+1\)
Ta có: \(\sqrt{x}\ge0\)
Suy ra \(\sqrt{x}+1\ge1\)
Vậy A đạt GTNN là 1 tại x = 0 (tự giải x ra nha)
câu b) Tương tự
Thánh làm biếng chào bn :3
Ta có :
\(\sqrt{x-1}\ge0\)
\(\Rightarrow2+\sqrt{x-1}\ge2\)
\(\Rightarrow Min_A=2\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}=\frac{3}{2}\)
b)
\(f\left(x\right)=\frac{1}{4}\Rightarrow\frac{\left(x+2\right)}{x-1}=\frac{1}{4}\)
dk \(x\ne1\Leftrightarrow4.\left(x+2\right)=x-1\Leftrightarrow4x+8=x-1\Rightarrow x=-3\)
c)
\(f\left(x\right)>1=>\frac{x+2}{x-1}>1\Leftrightarrow\frac{\left(x+2\right)-\left(x-1\right)}{x-1}>0\)
\(\Leftrightarrow\frac{3}{x-1}>0\Leftrightarrow x-1>0\Rightarrow x>1\)
Lời giải:
\(A=2004+\sqrt{2003-x}\)
a)Để \(A\) có nghĩa thì \(2003-x\ge0\Leftrightarrow x\le2003\)
b) Ta có:
\(A=2004+\sqrt{2003-x}=2005\)
Tương đương với:
\(\sqrt{2003-x}=1\)
Suy ra :\(\left|2003-x\right|=1\Rightarrow\left[{}\begin{matrix}2003-x=1\\2003-x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2002\\x=2004\end{matrix}\right.\)
c) Ta có:
Để \(A\) nhỏ nhất thì \(\sqrt{2003-x}\) cũng phải nhỏ nhất
\(\sqrt{2003-x}\ge0\Leftrightarrow2004+\sqrt{2003-x}\ge2004\)
Dấu "=" xảy ra khi: \(x=2003\)