Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 4 + 4^2 + ... + 4^99
4A = 4 + 4^2 + 4^3 +... + 4^100
4A - A = 3A = ( 4 + 4^2 + 4^100 ) - ( 1 + 4 + 4^2 + 4^99 )
3A = 4^100 - 1
Ta thấy: 3A < B => A < B/3 ( đpcm )
k đúng nhé
A = 99^2015 + 1/99^2014 + 1 < 99^2015 + 1 + 98 / 99^2014 + 1 + 98
= 99^2015 + 99 / 99^2014 + 99
= 99(99^2014 + 1) / 99(99^2013+1)
= 99^2014 + 1 / 99^2013 + 1 = B
=> A < B
Cho a,b,c \(\in\)N* và a<b<1.Ta có:\(\frac{a}{b}<\frac{a+c}{b+c}\)
\(\Rightarrow\)a(b+c)<b(a+c)
\(\Rightarrow\)ab+ac<ba+bc
\(\Rightarrow\)ac<bc
Tiếp nè:
\(\Rightarrow\)a<b đúng
Mặt khác:\(\frac{1}{2}<\frac{1+1}{2+1}=\frac{2}{3}\)
\(\frac{3}{4}<\frac{3+1}{4+1}=\frac{4}{5}\)
\(\frac{199}{200}<\frac{199+1}{200+1}=\frac{200}{201}\)
\(\Rightarrow A<\frac{2}{3}.\frac{4}{5}...........\frac{200}{201}\)
\(\Rightarrow A^2<\frac{1}{2}.\frac{2}{3}.\frac{3}{4}............\frac{199}{200}.\frac{200}{201}\)
\(\Rightarrow A^2<\frac{1}{101}<\frac{1}{100}\)
\(\Rightarrow A<\frac{1}{10}\)
b,Chưa làm được,sorry