K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100

4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4

4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)

4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100

4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101\

4A=98.99.100.101

A=\(\dfrac{\text{98.99.100.101}}{4}\)

tick nha

7 tháng 9 2017

Ta có: \(A=1.2.3+2.3.4+3.4.5+...+98.99.100\)

\(4A=\left(1.2.3+2.3.4+...+98.99.100\right)4\)

\(4A=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)...+98.99.100.\left(101-97\right)\)

\(4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100\)

\(4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+...+97.98.99.100-97.98.99.100+98.99.100.101\)

\(4A=98.99.100.101\)

\(\Rightarrow A=\dfrac{98.99.100.101}{4}=24497550\)

7 tháng 9 2017

Ta có:

\(A=1.2.3+2.3.4+3.4.5+...+98.99.100\)

\(\Rightarrow4A=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.4\)

\(\Rightarrow4A=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+98.99.100.\left(101-97\right)\)

\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...98.99.100.101-97.98.99.100\)

\(\Rightarrow4A=98.99.100.101\)

\(\Rightarrow A=\dfrac{98.99.100.101}{4}\)

Vậy \(A=\dfrac{98.99.100.101}{4}\)

7 tháng 9 2017

Ta có: \(A=1.2.3+2.3.4+3.4.5+...+98.99.100\)

\(4A=\left(1.2.3+2.3.4+...+98.99.100\right)4\)

\(4A=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)...+98.99.100.\left(101-97\right)\)

\(4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100\)

\(4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+...+97.98.99.100-97.98.99.100+98.99.100.101\)

\(4A=98.99.100.101\)

\(\Rightarrow A=\dfrac{98.99.100.101}{4}=24497550\)

14 tháng 1 2016

[1.2.3+98.99.100]x2+1=bạn tự tính nha
 

14 tháng 1 2016

đây là bài lớp 5
 

A=1/2 *(1/1*2-1/2*3+1/2*3-1/3*4+........+1/98*99-1/99*100)

=1/2*(1/2-1/99*100)

=1/2*(4950-1/9900)

=4950/19800

14 tháng 4 2019

\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)

\(A=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right]\)

\(A=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right]\)

\(A=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{99\cdot100}\right]=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)

16 tháng 9 2015

A=(98.99.100.101-0.1.2.3):4=242550

8 tháng 6 2017

=348450 nha bạn

13 tháng 1 2023

A= 1.2.3 + 2.3.4 + 3.4.5 +.....+ 98.99.100

4A = 98.99.100.4 + .....+ 3.4.5.4 + 2.3.4.4 + 1.2.3.4

4A = 98.99.100.(101-97) +... + 2.3.4.(5-1) + 1.2.3.4

4A = 98.99.100.101 - 97.98.99.100+......+2.3.4.5 - 1.2.3.4 + 1.2.3.4

4A = 98.99.100.101

  A = 98.99.100.101 : 4

  A = 24497550

A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 98.99.100

4A = 1.2.3.(4-0) + 2.3.4(5-1) + 3.4.5.(6-2) + ... + 98.99.100.(101-97)

4A = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 98.99.100.101 - 97.98.99.100

4A = (1.2.3.4 + 2.3.4.5 + 3.4.5.6 + ... + 98.99.100.101) - (0.1.2.3 + 1.2.3.4 + 2.3.4.5 + ... + 97.98.99.100)

4A= 98.99.100.101 - 0.1.2.3

4A = 98.99.100.101 - 0

4A = 98.99.100.101

A = 98.99.25.101

A = 24497550

14 tháng 4 2019

trả lời

ứng cử viên lớp máy vậy e

hok tốt

21 tháng 3 2015

T/c:A=1/1*2*3+1/2*3*4+1/3*4*5+1/4*5*6+...+1/97*98*99+1/98*99*100

2A=2/1*2*3+2/2*3*4+2/3*4*5+2/4*5*6+...+2/97*98*99+1/98*99*100

2A=(1/1*2-1/2*3)+(1/2*3-1/3*4)+(1/3*4-1/4*5)+.....+(1/97*98-1/98*99)+(1/98*99-1/99*100)

2A=1/2+1/99*100

A=tự tính nha

19 tháng 2 2018

A= [(1/2-1/2*3)/2]+[(1/2-1/3*4)/2]+...+[(1/2-1/99*100)/2]

A=(1/2-1/99*100)/2

A=-101/198/2

A=-101/396

4 tháng 1 2019

Bạn cho sai đề rồi ! 

Sửa : Chứng tỏ : \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{4949}{9900}\)

Ta có :  \(VT=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

 \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(=\frac{99.100-2}{2.99.100}\)

\(=\frac{4949}{9900}=VP\)

Study well ! >_<