K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha

1, 7A = 7+7^2+7^3+....+7^2008

6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1

=> A = (7^2008-1)/6

Tk mk nha

\(A=1+7+7^2+7^3+...+7^{2007}\)

\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)

\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)

\(\Rightarrow6A=7^{2008}-1\)

\(\Rightarrow A=\frac{7^{2008}-1}{6}\)

3 tháng 2 2022

a) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)

=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)

=\(1-\dfrac{1}{6}\)=\(\dfrac{5}{6}\)

b) \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)

=\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)

=\(\dfrac{1.2}{3.5.2}+\dfrac{1.2}{5.7.2}+\dfrac{1.2}{7.9.2}+\dfrac{1.2}{9.11.2}+\dfrac{1.2}{11.13.2}\)

=\(\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\right)\).

=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\right)\)

=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)=\(\dfrac{1}{2}.\dfrac{10}{39}\)=\(\dfrac{5}{39}\).

c) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)

=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

=\(1-\dfrac{1}{8}=\dfrac{7}{8}\).

d) \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)

=\(\dfrac{2^4}{2^5}+\dfrac{2^3}{2^5}+\dfrac{2^2}{2^5}+\dfrac{2}{2^5}+\dfrac{1}{2^5}\)

=\(\dfrac{2^4+2^3+2^2+2+1}{2^5}\)=\(\dfrac{2^5-1}{2^5}=\dfrac{31}{32}\).

e) \(\dfrac{1}{7}+\dfrac{1}{7^2}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{100}}=\dfrac{7^{99}+7^{98}+7^{97}+...+7+1}{7^{100}}=\dfrac{\dfrac{7^{100}-1}{6}}{7^{100}}=\dfrac{7^{100}-1}{6.7^{100}}\)

 

 

7 × 3 mu x + 20 × 3 mu x = 3 mu 25

25 tháng 3 2020

\(a,1-2+3-4+5-6+......+199-200\)

\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+.....+\left(199-200\right)\)( 100 cặp )

\(=-1+\left(-1\right)+\left(-1\right)+........+\left(-1\right)\)( 100 số hạng )

\(=-1.100\)

\(=-100\)

25 tháng 3 2020

\(a.1-2+3-4+5-6+...+199-200\)

\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(199-200\right)\)  (có tất cả \(200:2=100\)cặp)

\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)

\(=\left(-1\right).200=-200\)

\(b.1+2-3-4+5+6-7-8+...+97+98-99-100\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)  (có \(100:4=25\)cặp)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)

\(=\left(-4\right).25=-100\)

\(c.1+\left(-6\right)+11+\left(-16\right)+...+21+\left(-26\right)\)

\(=\left[1+\left(-6\right)\right]+\left[11+\left(-16\right)\right]+...+\left[21+\left(-26\right)\right]\) (có tất cả \(26:2=13\)cặp)

\(=\left(-5\right)+\left(-5\right)+...+\left(-5\right)\)

\(=-5.13=-65\)

5 tháng 4 2018

các bạn ơi giúp mình với

25 tháng 12 2020

cho mi sửa lại:

\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)

9 tháng 3 2021

dấu 8 là nhân còn dấu ^ là mũ ạ

3 tháng 1 2022
🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏