K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

5 tháng 10 2015

a/P=1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200

=(1+1/3+1/5+1/7+...+1/199)-(1/2+1/4+1/6+...+1/200)

=(1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/200)-2(1/2+1/4+1/6+...+1/200)

=(1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/200)-(1+1/2+1/3+...+1/100)

=1/101+1/102+1/103+...+1/200

 

9 tháng 12 2016

ko hiểu

a:

Số số hạng trong dãy M là:

(1002-12):10+1=100(số)

=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10

\(M=1002-992+982-972+...+22-12\)

\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)

\(=10+10+...+10\)

=10*50=500

b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)

\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)

=10+10+...+10

=10*10=100

17 tháng 3 2022

`Answer:`

Tổng: `(200-100):1+1=100` số hạng

Ta có: 

\(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{102}>\frac{1}{200}\)

...

\(\frac{1}{200}=\frac{1}{200}\)

\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\) 

\(\Rightarrow A>\frac{100}{200}\)

\(\Rightarrow A>\frac{1}{2}\)

5 tháng 10 2015

a/ P=1-1/2+1/3-1/4+....+1/199-1/200

= 1+1/2+1/3+1/4+1/5+...+1/200 - 2.(1/2+1/4+...+1/200)

= 1+1/2+1/3+1/4+1/5+...+1/200 - 1-1/2-1/3-...-1/100

=1/101+1/102+...+1/200

b/ k-k/2+ k/3- k/4+...+k/199-k/200

=k+k/2+k/2+...+k/199+k/200 -2(k/2+k/4+k/6+...+k/200)

=k+k/2+k/2+...+k/199+k/200-k-k/2-k/3-...-k/100

=k/101+k/102+...+k.200