Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1-1/2+1/2-1/3+1/3-1/4+...+1/64-1/128
A=1-1/128
A=127/128
Vậy A=\(\frac{127}{128}\)
B=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
B=1-1/100
B=99/100
Vậy B=\(\frac{99}{100}\)
Ta có :
\(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{13.14}\)
\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{13}-\frac{1}{14}\)
\(C=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(1-\frac{1}{14}\right)\)
\(C=1-\frac{1}{14}\)
\(C=\frac{14}{14}-\frac{1}{14}\)
\(C=\frac{14-1}{14}\)
\(C=\frac{13}{14}\)
Vậy \(C=\frac{13}{14}\)
Chúc bạn học tốt ~
\(C=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{13\cdot14}\)
\(C=\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+....+\frac{14-13}{13\cdot14}\)
\(C=\frac{2}{1\cdot2}-\frac{1}{1\cdot2}+\frac{3}{2\cdot3}-\frac{2}{2\cdot3}+\frac{4}{3\cdot4}-\frac{3}{3\cdot4}+....+\frac{14}{13\cdot14}-\frac{13}{13\cdot14}\)
\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{13}-\frac{1}{14}\)
\(C=1-\frac{1}{14}\)
\(C=\frac{13}{14}\)
dấu "." là dấu nhân nhs
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
a)\(=\dfrac{3}{3}+\dfrac{4}{3}=\dfrac{7}{3}\)
b)\(=\dfrac{5}{9}\times\dfrac{3}{2}=\dfrac{15}{18}=\dfrac{5}{6}\)
d)\(=\left(\dfrac{12}{8}-\dfrac{3}{8}\right)\times2=\dfrac{9}{8}\times2=\dfrac{18}{8}=\dfrac{9}{4}\)
c)\(=\dfrac{4}{3}-\dfrac{5}{6}=\dfrac{8}{6}-\dfrac{5}{6}=\dfrac{3}{6}=\dfrac{1}{2}\)
a) 1 + 4/3 = 7/3
b) 5/9 : 2/3 = 5/6
c ) 4/3 -1/3 x 5/2
= 1 x 5/2
= 5/2
d) ( 3/2 - 3/8) : 1/2
= 9/8 : 1/2
= 9/4
e) 15/16 : 3/8 x 3/4
= 5/2 x 3/4
= 15/8
f) 7/19 x 1/3 x 7/19 x 2/3
= 7/19 x (1/3 x 2/3)
= 7/19 x 2/9
= 14/171
g) 3/5 x 8/27 x 25/3
= 3/5 x 25/3 x 8/27
= 5 x 8/27
= 40/27
h) 1/5 + 4/11 + 4/5 + 7/11
= (1/5 + 4/5) + (4/11 + 7/11)
= 1 + 1
= 2
a) đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow2\times A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(\Rightarrow2\times A-A=1-\frac{1}{256}\)
\(A=\frac{255}{256}\)
phần b bn cx lm tương tự như z nha!
c) sửa đề:
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{13x14}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{13}-\frac{1}{14}\)
\(=1-\frac{1}{14}=\frac{13}{14}\)
Sửa:
d) \(\frac{1}{15x18}+\frac{1}{18x21}+\frac{1}{21x24}+...+\frac{1}{87x90}\)
\(=\frac{1}{3}x\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(=\frac{1}{3}x\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(=\frac{1}{3}x\frac{1}{18}\)
\(=\frac{1}{54}\)