Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\)
\(=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{21}\right)=\frac{1}{2}.\frac{7-1}{21}=\frac{1}{7}\)
\(\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{19\times21}\)
\(=\frac{1}{2}\times\left(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{19\times21}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{21}\right)\)
\(=\frac{1}{2}\times\frac{2}{7}\)
\(=\frac{1}{7}\)
a) \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)
\(\Rightarrow\)\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)
\(\Rightarrow\)\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)\)
\(\Leftrightarrow\)\(A=2-\frac{1}{2^7}=\frac{255}{128}\)
b) \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\frac{2}{7}=\frac{1}{7}\)
\(a)5\frac{3}{5}+1\frac{3}{4}+4\frac{1}{4}+3\frac{2}{5}\)
\(=\)\((5\frac{3}{5}+3\frac{2}{5})+(1\frac{3}{4}+4\frac{1}{4})\)
\(=[8+(\frac{3}{5}+\frac{2}{5})]+[5+(\frac{3}{4}+\frac{1}{4})]\)
\(=(8+1)+(5+1)\)
\(=9+6=15\)
\(b)\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=(\frac{3}{4}+\frac{1}{4})+(\frac{18}{21}+\frac{3}{21})+(\frac{19}{32}+\frac{13}{32})\)
\(=1+1+1=3\)
_Học tốt_
A = 1 * 3 + 3 * 5 + ... + 21 * 23
A = 1 * (3+3 * 5 + ... + 21) * 23
A = 1 * 23
A = 23
C = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5
C = 1/1 - 1/5
C = 4/5
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}+\frac{1}{21.23}\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}+\frac{2}{21.23}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}+\frac{1}{21}-\frac{1}{23}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{23}\right)\)
\(A=\frac{1}{2}.\frac{22}{23}\)
\(A=\frac{11}{23}\)