K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).....+\left(1+\frac{1}{99.101}\right)\)

\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{99.101+1}{99.101}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{100^2}{99.101}\)

\(=\frac{2.3.4.....100}{1.2.3.....99}.\frac{2.3.4.....100}{3.4.5.....101}\)

\(=100.\frac{2}{101}=\frac{200}{101}\)

\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{99.101}\right)\)

\(=\frac{2.2}{1.3}\frac{3.3}{2.4}.....\frac{100.100}{99.101}\)

\(=\frac{\left(2.3.4.....100\right).\left(2.3.4.....100\right)}{\left(1.2.3.....99\right).\left(3.4.5.....101\right)}\)

\(=\frac{100.2}{101}=\frac{200}{101}\)

\(\frac{\left(x-3\right)\left(x+5\right)}{\left(x-2\right)^2}< 0\)

\(\Rightarrow\frac{\left(x-3\right)\left(x+5\right)}{\left(x-2\right).\left(x-2\right)}< 0\)

=> ( x - 3 ) . ( x - 5 ) và ( x - 2 ) . ( x - 2 ) trái dấu 

Mà ( x - 2 )2 = ( x - 2 ) . ( x - 2 ) ≥ 0 ∀ x

 \(\Rightarrow\hept{\begin{cases}\left(x−3\right).\left(x+5\right)< 0\\\left(x−2\right).\left(x−2\right)>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< −5;−5< x< 3\\x>2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< −5\\2< x< 3\end{cases}}\)

30 tháng 3 2017

sao bai nay ma dc goi la lop 7 a

30 tháng 3 2017

4/3 .9/8 .16/15 ......10000/9999

2.2 .3.3.4.4.....100.100 /1.3.2.4.3.5.....99.101

( 2.3.4 ....100 ) .( 2.3.4 ....100) / ( 1.2.3.....99). (3.4.5...101 )

100*2 /101

200/101

chú thích không có trong bài nhé

các dâu hiệu nhận biết

" ..........." là dấu nhân

"  /  " là dâu của phân số

"  *  " cũng là dấu nhân nha bạn

16 tháng 6 2015

A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.....+ 1/99- 1/100

A= 1 - 1/100

A= 99/100

16 tháng 6 2015

AXXXXXXXXXXXXXXXXXXXXXXX

ghi xong hết rồi

mạng nó rớt, ấn gửi trả lời mà không biết

tong teo

18 tháng 3 2023

\(P=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{2021.2023}\)

Ta sẽ "tách" P làm 2 phần:

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)

\(B=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{2020.2022}\)

Do đó \(P=A+B\)

Ta có \(A=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{2023-2021}{2021.2023}\right)\)

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{2023}\right)\) 

\(A=\dfrac{1011}{2023}\)

Mặt khác, \(B=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{2020.2022}\)

\(B=\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2020.2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+\dfrac{8-6}{6.8}+...+\dfrac{2022-2020}{2020.2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2022}\right)\)

\(B=\dfrac{505}{2022}\)

Từ đó \(P=A+B=\dfrac{1011}{2023}+\dfrac{505}{2022}=\dfrac{3065857}{4090506}\)

 

27 tháng 6 2016

\(A=\left(1+\frac{1}{2^2-1}\right)\left(1+\frac{1}{3^2-1}\right)\left(1+\frac{1}{4^2-1}\right)\cdot...\cdot\left(1+\frac{1}{100^2-1}\right)\)

\(=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot...\cdot\frac{99^2}{98\cdot100}\cdot\frac{100^2}{99\cdot101}=\frac{200}{101}\)

\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)......\left(1+\frac{1}{99.100}\right)\)

\(=\left(1+\frac{1}{2^2-1}\right)\left(1+\frac{1}{3^2-1}\right)......\left(1+\frac{1}{100^2-1}\right)\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}..............\frac{100^2}{99.100}=\frac{200}{101}\)

T nha

10 tháng 10 2023

Ta viết lại tổng này thành:

\(P=\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{97.99}\right)+\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{98.100}\right)-\dfrac{49}{99}\)

\(P=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{97.99}\right)+\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{98.100}-\dfrac{49}{99}\right)\)

\(P=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)-\dfrac{49}{99}\)

\(P=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)-\dfrac{49}{99}\)

\(P=\dfrac{1}{2}-\dfrac{1}{198}+\dfrac{1}{4}-\dfrac{1}{200}-\dfrac{49}{99}\)

\(P=\dfrac{49}{200}\)

 

10 tháng 10 2023

loading...  

8 tháng 1 2017

\(A=xemlai\) chưa hưa hiểu Quy luật

\(B=\frac{\left(n.\left(n+2\right)+1\right)}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)

\(B=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.5}...\frac{98.98}{97.99}\frac{99.99}{98.100}\frac{100.100}{99.101}\\\)

\(B=\frac{2.100}{1.101}=\frac{200}{101}\)