Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x.y}{2.3}=\dfrac{54}{6}=9\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=81\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm6\\y=\pm9\end{matrix}\right.\)
b) \(\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x^2-y^2}{5^2-3^2}=\dfrac{4}{16}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{25}{4}\\y^2=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{2}\\y=\pm\dfrac{3}{2}\end{matrix}\right.\)
c: Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{10}=\dfrac{y}{15}\)
Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)
nên \(\dfrac{y}{15}=\dfrac{z}{21}\)
mà \(\dfrac{x}{10}=\dfrac{y}{15}\)
nên \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{92}{46}=2\)
Do đó: x=20; y=30; z=42
mình làm câu b nhé
2x-2/4=3y-6/9=z-3/4
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
=2x-2+3y-6-z-3/4+9-5
=(2x+3y-z)-(2+6-3)/9
=50-5/9=45/9=5
mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
a) Đặt: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)
Ta có: \(x^2+3y^2-2z^2=-16\)
\(\Rightarrow\left(2k\right)^2+3\cdot\left(3k\right)^2-2\cdot\left(4k\right)^2=-16\)
\(\Rightarrow4k^2+3\cdot9k^2-2\cdot16k^2=-16\)
\(\Rightarrow4k^2+27k^2-32k^2=-16\)
\(\Rightarrow-k^2=-16\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=\pm4\)
Với k = 4
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{3}=4\\\dfrac{z}{4}=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot4=8\\y=3\cdot4=12\\z=4\cdot4=16\end{matrix}\right.\)
Với k = -4
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-4\\\dfrac{y}{3}=-4\\\dfrac{z}{4}=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot-4=-8\\y=3\cdot-4=-12\\z=4\cdot-4=-16\end{matrix}\right.\)
Vậy: ...
b) Đặt: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)
Ta có: \(2x^2+2y^2-3z^2=-100\)
\(\Rightarrow2\cdot\left(3k\right)^2+2\cdot\left(4k\right)^2-3\cdot\left(5k\right)^2=-100\)
\(\Rightarrow2\cdot9k^2+2\cdot16k^2-3\cdot25k^2=-100\)
\(\Rightarrow18k^2+32k^2-75k^2=-100\)
\(\Rightarrow-25k^2=-100\)
\(\Rightarrow k^2=-\dfrac{100}{-25}=4\)
\(\Rightarrow k=\pm2\)
Với k = 2
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=2\\\dfrac{y}{4}=2\\\dfrac{z}{5}=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot3=6\\y=2\cdot4=8\\z=2\cdot5=10\end{matrix}\right.\)
Với k = -2
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-2\\\dfrac{y}{4}=-2\\\dfrac{z}{5}=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot-3=-6\\y=2\cdot-4=-8\\z=2\cdot-5=-10\end{matrix}\right.\)
Vậy: ...