Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{13}{20}+\dfrac{3}{5}+x=\dfrac{5}{6}\)
\(\Rightarrow\dfrac{5}{4}+x=\dfrac{5}{6}\)
\(\Rightarrow x=\dfrac{5}{6}-\dfrac{5}{4}\)
\(\Rightarrow x=\dfrac{-5}{12}\)
b) \(x+\dfrac{1}{3}=\dfrac{2}{5}-\dfrac{-1}{3}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{11}{15}\)
\(\Rightarrow x=\dfrac{11}{15}-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{2}{5}\)
c)\(\dfrac{-5}{8}-x=\dfrac{-3}{20}-\dfrac{-1}{6}\)
\(\dfrac{-5}{8}-x=\dfrac{1}{60}\)
\(\Rightarrow x=\dfrac{-5}{8}-\dfrac{1}{60}\)
\(\Rightarrow x=\dfrac{-77}{120}\)
d) \(\dfrac{3}{5}-x=\dfrac{1}{4}+\dfrac{7}{10}\)
\(\Rightarrow\dfrac{3}{5}-x=\dfrac{19}{20}\)
\(\Rightarrow x=\dfrac{3}{5}-\dfrac{19}{20}\)
\(\Rightarrow x=\dfrac{-7}{20}\)
e) \(\dfrac{-3}{7}-x=\dfrac{4}{5}+\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{-3}{7}-x=\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-3}{7}-\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-59}{105}\)
g) \(\dfrac{-5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)
\(\Rightarrow\dfrac{-5}{6}-x=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{-5}{6}-\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{-13}{12}\)
Sửa đề:
B = 1 - 3 - 5 + 7 + 9 - 11 - 13 + 15 + ... + 2019 - 2021 - 2023 + 2025 + 2027
= (1 - 3 - 5 + 7) + (9 - 11 - 13 + 15) + ... + (2019 - 2021 - 2023 + 2025) + 2027
= 0 + 0 + ... + 0 + 2027
= 2027
a) B = \(\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{21}{20}=\dfrac{1}{3}.1.....\dfrac{21}{1}=\dfrac{21}{3}=7\)
b) Em chịu, chưa học số âm :)
Bài làm
Bạn hamlon bên dưới không làm được vậy để mình làm cho bạn .
\(\frac{3}{5}.\frac{3}{7}+\frac{3}{5}.\frac{2}{9}-\frac{3}{5}.\frac{3}{11}\)
\(=\frac{3}{5}\left(\frac{3}{7}+\frac{2}{9}-\frac{3}{11}\right)\)
\(=\frac{3}{5}.\left(\frac{297}{693}+\frac{154}{693}-\frac{189}{693}\right)\)
\(=\frac{3}{5}.\frac{262}{693}\)
\(=\frac{262}{1155}\)
\(\frac{22}{9}-\left(x+\frac{1}{2}\right)^2=\frac{7}{3}\)
\(\left(x+\frac{1}{2}\right)^2=\frac{22}{9}-\frac{7}{3}\)
\(\left(x+\frac{1}{2}\right)^2=\frac{1}{9}\)
\(\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{3}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}-\frac{1}{2}\)
\(x=-\frac{1}{6}\)
\(\frac{22}{9}-\left(x+\frac{1}{2}\right)^2=\frac{7}{3}\)
\(\left(x+\frac{1}{2}\right)^2=\frac{22}{9}=\frac{7}{3}\)\
\(\left(x+\frac{1}{2}\right)^2=\frac{22}{9}-\frac{21}{9}\)
\(\left(x+\frac{1}{2}\right)^2=\frac{1}{9}\)
\(\Rightarrow x+\frac{1}{2}=\pm\frac{1}{3}\)
TH1:\(x+\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}-\frac{1}{2}\)
\(x=-\frac{1}{6}\)
TH2:\(x+\frac{1}{2}=-\frac{1}{3}\)
\(x=-\frac{1}{3}-\frac{1}{2}\)
\(x=-\frac{5}{6}\)
Vậy \(x\in\left\{-\frac{1}{6};-\frac{5}{6}\right\}\)
\(a^3b-ab^3=ab\left(a^2-b^2\right)=ab\left(a^2-ab+ab-b^2\right)=ab\left(a-b\right)\left(a+b\right)\)
Với a hoặc b chẵn \(\Leftrightarrow ab\left(a-b\right)\left(a+b\right)⋮2\)
Với a và b lẻ \(\Leftrightarrow\left(a-b\right)⋮2\Leftrightarrow ab\left(a-b\right)\left(a+b\right)⋮2\)
Vậy \(ab\left(a-b\right)\left(a+b\right)⋮2,\forall a,b\left(1\right)\)
Với a hoặc b chia hết cho 3 thì \(ab\left(a-b\right)\left(a+b\right)⋮3\)
Với \(a=3k+1;b=3q+1\Leftrightarrow\left(a-b\right)=3\left(k-q\right)⋮3\)
\(\Leftrightarrow ab\left(a-b\right)\left(a+b\right)⋮3\)
Với \(a=3k+1;b=3q+2\Leftrightarrow\left(a+b\right)=\left(3k+1+3q+2\right)=3\left(k+q+1\right)⋮3\)
\(\Leftrightarrow ab\left(a-b\right)\left(a+b\right)⋮3\)
Mà a,b có vai trò tương đương nên \(ab\left(a-b\right)\left(a+b\right)⋮3,\forall a,b\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrowđpcm\)
Ta có : a3b -ab3
=a3b -ab -ab3 +ab
=ab (a2 -1) -ab (b2 -1)
=ab (a-1)(a+1) -ab (b-1)(b+1)
Vì a (a-1)(a+1) là 3 số tự nhiên liên tiếp nên chia hết cho 6 .Tương tự b (b-1)(b+1) cũng chia hết cho 6
=> a3b -ab3 chia hết cho 6 (đpcm )
=>\(\left(x-3;2y+1\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(4;3\right);\left(10;0\right);\left(1;-4\right);\left(-4;-1\right)\right\}\)
em cảm ơn ạ