K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-\)\(2bc\ge0\)

\(\Rightarrow a^2-2ab+b^2+a^2-2ac+c^2\)\(+b^2-2bc+c^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)( luôn đúng với mọi a,b,c) đpcm

chúc bạn học tốt. mk cũng 2k5 nhé, kb mk

29 tháng 3 2019

Điều cần chứng minh tương đương với:

\(\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\) (đúng)

Suy ra đpcm.

1 tháng 11 2015

a^2-b^2-c^2-ab-ac-bc

=2a^2-2b^2-2c^2-2ab-2ac-2bc

=(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)

=(a-b)^2+(b-c)^2+(a-c)^2

Ta có (a-b)^2 lớn hơn 0 hoặc bằng 0.        (b-c)^2 lớn hơn hoặc bằng 0

           (a-c)^2 lớn hơn hoặc bằng 0

=>(a-b^2+(b-c)^2+(a-c)^2 lớn hơn hoặc bằng 0

vậy a^2+b^2+c^2-ab-ac-bc lớn hơn hoặc bằng 0

           

10 tháng 3 2019

bạn trần ngọc mai sai rồi vì dấu "=" xảy ra <=>a=b=c mà đề bài cho a,b,c khác nhau mà bạn.

5 tháng 8 2020

\(a^2+b^2+c^2-ab-bc-ca\ge0\)

\(< =>2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(< =>\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ca\right)\ge0\)

\(< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng mịnh

5 tháng 8 2020

\(a^2+b^2+c^2-ab-ac-bc\ge0\)(*)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)( Đúng )

Vậy (*) đúng

=> đpcm

Dấu " = " xảy ra <=> a = b = c 

5 tháng 10 2015

  a2 + b2 + c2 - ab - ac - bc ≥ 0

<=> 2( a2 + b2 + c2 - ab - ac - bc)  ≥ 0

<=> (a2 - 2ac + c2) + (a2 - 2ab + b2) + (b- 2bc + c2) >

<=> (a - c)+ (a - b)2 + ( b - c)>

Điều này luôn đúng với mọi a; b; c

=> điều cần chứng minh

Dấu "=" xảy ra <=> a - c = 0; a - b = 0 ; b - c = 0  <=> a = b = c

5 tháng 10 2015

\(BPT\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

<=> \(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) 

BĐT cuối luôn đúng vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\)

=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu '=' của BĐT xảy ra khi a = b = c 

24 tháng 2 2017

câu 1 mình chưa nghĩ, nhưng câu 2 bạn bình phương 2 vees lên nhé

12 tháng 4 2018

vay cng ko biet nua

 

a: Ta có: \(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

=>a=b=c

b: ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

2 tháng 4 2017

Lại copy!!!

Giải:

Áp dụng BĐT Bunhiacopski

Xét cặp số \(\left(1,1,1\right)\)\(\left(a,b,c\right)\) ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\) (Đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

2 tháng 4 2017


Chúng ta có thể dễ dàng bất đức thức này bằng vài bước suy luận cơ bản như sau:

Chứng minh bất đẳng thức: a2 + b2 + c2 ≥ ab + bc + ca

Điều này luôn đúng nên ta có điều phải chứng minh. Đẳng thức xảy ra khi a = b = c.

28 tháng 3 2018

a2+b2+c2 ≥ ab+bc+ac (1)

Xét hiệu

a2 +b2+c2 -ab-bc-ac ≥ 0

<=> 2a2+2b2+2c2-2ab-2bc-2ac ≥ 0

<=> (a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2) ≥ 0

<=> (a-b)2 +(b-c)2 +(c-a)2 ≥ 0 (luôn đúng với mọi a,b,c)

=> (1) đc cm

30 tháng 3 2015

nhân 2 vào 2 vế rồi chuyển vế sau đó khai triển ta được (a-b)(b-c)(c-a) >=0

luôn đúng với mọi a;b;c

suy ra ĐPCM

30 tháng 3 2015

ta có     \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(\(\Rightarrow\)a=b=c)

<=> \(a^2+b^2+c^2\ge ab+bc+ca\)