K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

a) \(23,3\) phút; \(540^0;27,6^0C\)

b) Khi lấy số trung bình làm đại diện cho các số liệu thống kê về quy mô và độ lớn, có thể xem rằng mỗi ngày bạn A đi từ nhà đến trường đều mất 23,3 phút.

Tương tự, nêu ý nghĩa số trung bình của các số liệu thống kê cho ở bảng 7 và bảng 8.

17 tháng 5 2017

Thống kê

17 tháng 5 2017

Thống kê

17 tháng 5 2017

Thống kê

17 tháng 5 2017

a) Điểm số của xạ thủ A có : \(\overline{x}\approx8,3\) điểm ; \(s_1^2\approx1,6;s_1\approx1,27\) điểm

Điểm số của xạ thủ B có \(\overline{y}=8,4\) điểm, \(s_2^2\approx1,77;s_2\approx1,33\) điểm

b) \(\overline{x}\approx\overline{y}=8,4\) điểm; \(s_1^2< s_2^2\), như vậy mức độ phân tán của các điểm số (so với số trung bình) của xạ thủ A là bé hơn. Vì vậy trong lần tập bắn này xạ thủ A bắn chụm hơn.

15 tháng 4 2017

a) Bảng phân bố tần số (về tuổi thọ bóng đèn điện) có thể viết dưới dạng như sau:

Số trung bình về tuổi thọ của bóng đèn trong bảng phân bố trên là:

.(3x1150 + 6x1160 + 12x1170 + 6x1180 + 3x1190)

= 1170.

b) Số trung bình về chiều dài lá cây dương xỉ trong bài tập 2 trong là:

.(8x15 + 18x25 + 24x35 + 10x45) = 31 (cm).

17 tháng 5 2017

a) Số trung bình \(\overline{x}=6,6\) triệu đồng. Số trung vị \(M_e=6\) triệu đồng. Mốt \(M_0=6\) triệu đồng

b) Trong các số liệu thống kê đã cho có sự chênh lệch nhau quá lớn, nên ta không chọn số trung bình cộng mà chọn số trung vị \(M_e=6\) triệu đồng, làm đại diện cho mức thu nhập trong năm 2000 của mỗi gia đình trong 31 gia đình được khảo sát.

29 tháng 5 2017

a) Phương sai và độ lệch chuẩn trong bài tập 1. Bảng phân bố tần số viết lại là

Số trung bình: \(\overline{x} = 1170\)

Phương sai: \(S_{x}^{2}=\frac{1}{30}(3x1150^{2}+6x1160^{2}+12x1170^{2}+6x1180^{2}+3x1190^{2})-1170^{2} = 120\)

Độ lệch chuẩn: Sx.= \(\sqrt{S_{x}^{2}}=\sqrt{120} ≈ 10,9545\)

b) Phương sai và độ lệch chuẩn, bảng thống kê trong bài tập 2 \(\S 1.\)

\(S_{x}^{2}=\frac{1}{60}(8x15^{2}+18x25^{2}+24x35^{2}+10x45^{2}) - 312 = 84 \)

Sx ≈ 9,165.

17 tháng 5 2017

a) Không tính được số trung bình

Bảng phân bố đã cho có 49 số liệu, mỗi số liệu thống kê là một xếp loại lao động. Có tất cả 4 xếp loại lao động được sắp thành dãy không tăng từ xếp loại lao động cao nhất là "lao động loại A" đến xếp loại thấp nhất là "lao động loại D". Dựa vào dãy này, ta tìm được số trung vị \(M_e\) là xếp loại "lao động loại B"

Có hai mốt \(M_0^{\left(1\right)}\) là xếp loại "lao động loại B"; \(M_0^{\left(2\right)}\) là xếp loại "lao động loại C"

b) Ta chọn xếp loại "lao động loại B" để đại diện cho các giá trị thống kê đã cho về quy mô và độ lớn

17 tháng 5 2017

a) Tính chiều cao trung bình của học sinh nam

Cách 1 : Sử dụng bảng phân bố tần số ghép lớp :

\(\overline{x}=\dfrac{1}{60}\left(5.140+9.150+19.160+17.170+10.180\right)\)

\(\overline{x}=163\)

Cách 2 : Sử dụng bảng phân bố tần suất ghép lớp :

\(\overline{x}=\dfrac{1}{100}\left(8,33.140+15.150+31,67.160+28,33.170+16,67.180\right)\)\(\overline{x}=163\)

Tính chiều cao trung bình của học sinh nữ:

Cách 1 : Sử dụng bảng phân bố tần số ghép lớp \(\overline{x}=\dfrac{1}{60}\left(8.140+15.150+16.160+14.170+7.180\right)\)

\(\overline{x}=159,5\)

Cách 2 : Sử dụng bảng phân bố tần suất ghép lớp :

\(\overline{x}=\dfrac{1}{100}\left(13,33.140+25.150+26,67.160+23,33.170+11,67.180\right)\)

\(\overline{x}=159,5\)

b) Vì \(\overline{x}_{nam}=163>\overline{x}_{nữ}=159,5\) nên suy ra học sinh ở nhóm nam cao hơn học sinh ở nhóm nữ

c) \(\overline{x}=\left(60.159,5+60.163\right)\dfrac{1}{2}\approx161\left(cm\right)\)