K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
26 tháng 2 2022

\(x^3-xy+1=2y-x\)

\(\Leftrightarrow x^3+x+1=xy+2y\)

\(\Leftrightarrow x^3+x+1=y\left(x+2\right)\)

\(\Leftrightarrow y=\dfrac{x^3+x+1}{x+2}\)

-Vì \(x,y\) là các số nguyên nên:

\(\left(x^3+x+1\right)⋮\left(x+2\right)\)

\(\Rightarrow\left(x^3+2x^2-2x^2-4x+5x+10-9\right)⋮\left(x+2\right)\)

\(\Rightarrow\left[x^2\left(x+2\right)-2x\left(x+2\right)+5\left(x+2\right)-9\right]⋮\left(x+2\right)\)

\(\Rightarrow\left[\left(x+2\right)\left(x^2-2x+5\right)-9\right]⋮\left(x+2\right)\)

-Vì \(\left(x+2\right)\left(x^2-2x+5\right)⋮\left(x+2\right)\)

\(\Rightarrow9⋮\left(x+2\right)\)

\(\Rightarrow\left(x+2\right)\in\left\{1;3;9;-1;-3;-9\right\}\)

\(\Rightarrow x\in\left\{-1;1;7;-3;-5;-11\right\}\) (tmđk)

*Với \(x=-1\) thì \(y=\dfrac{\left(-1\right)^3+\left(-1\right)+1}{\left(-1\right)+2}=-1\) (tmđk)

*Với \(x=1\) thì \(y=\dfrac{1^3+1+1}{1+2}=1\)(tmđk)

*Với \(x=7\) thì \(y=\dfrac{7^3+7+1}{7+2}=39\)(tmđk)

*Với \(x=-3\) thì \(y=\dfrac{\left(-3\right)^3+\left(-3\right)+1}{\left(-3\right)+2}=29\)(tmđk)

*Với \(x=-5\) thì \(y=\dfrac{\left(-5\right)^3+\left(-5\right)+1}{\left(-5\right)+2}=43\)(tmđk)

*Với \(x=-11\) thì \(y=\dfrac{\left(-11\right)^3+\left(-11\right)+1}{\left(-11\right)+2}=149\)(tmđk)

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)