Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là \(X=\overline{abc}\)
Theo đề, ta có: a+c=9 và \(\overline{abc}-\overline{cba}=99\) và X chia hết cho 18
=>a+c=9 và 100a+10b+c-100c-10b-a=99 và X chia hết cho 18
=>a+c=9 và 99a-99c=99 và X chia hết cho 18
=>a+c=9 và a-c=1 và X chia hết cho 18
=>a=5 và c=4 và X chia hết cho 18
=>b=0
=>Số cần tìm là 504
Gọi số cần tìm là ab (a khác 0; a,b < 10)
Theo bài ra ta có:
ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a + b)
Vì a + b là số chính phương nên a + b chia hết cho 11.
Mà 1 ≤ a < 10
2 ≤ b < 10
=> 3 ≤ a + b < 20
=> a + b = 11. Mà a < b
Ta có bảng sau :
a | 2 | 3 | 4 | 5 |
b | 9 | 8 | 7 | 6 |
Mà ba (gạch đầu) là số nguyên tố nên ba = 83
Vậy ab = 38
Bài 1:
Gọi 2 số là a,b (\(a,b\inℤ\))
Ta có: a+b=51(*)
Mà 2/5a=1/6b
=> a=5/12b
Thay vào (*) ta có: 17/12b=51
=>b=36
Bài 1 :
Gọi số thứ nhất và số thứ hai lần lượt là x và y (x,y thuộc z)
Tổng hai số bằng : \(x+y=51\left(1\right)\)
Biết 2/5 số thứ nhất thì bằng 1/6 số thứ hai
\(x\frac{2}{5}-y\frac{1}{6}=0\left(2\right)\)
Từ 1 và 2 ta suy ra được hệ phương trình sau :
\(\hept{\begin{cases}x+y=51\\x\frac{2}{5}-y\frac{1}{6}=0\end{cases}}\)\(< =>\hept{\begin{cases}x=51-y\\\frac{2x}{5}-\frac{y}{6}=0\end{cases}}\)
\(< =>\frac{\left(51-y\right)2}{5}-\frac{y}{6}=0\)\(< =>\frac{102-2y}{5}-\frac{y}{6}=0\)
\(< =>\frac{102-2y}{5}=\frac{y}{6}\)\(< =>\left(102-2y\right)6=5y\)
\(< =>612-12y=5y\)\(< =>612=17y\)
\(< =>y=\frac{612}{17}=36\left(3\right)\)
Thay 3 vào 1 ta được : \(x+y=51\)
\(< =>x+36=51< =>x=51-36=15\)
Vậy số thứ nhất và số thứ hai lần lượt là 15 và 36
Mình ngĩ thê này
Gọi số cần tìm là \(\overline{ab}\)
Theo đề bài, ta có HPT:
\(\hept{\begin{cases}b-a=5\\b=2a+2\end{cases}\Rightarrow\hept{\begin{cases}b-a=5\\5=a+2\end{cases}\Rightarrow}\hept{\begin{cases}b=8\\a=3\end{cases}}}\)
Vậy số cần tìm lả 38
Gọi số cần tìm là abc
Nhận thấy rằng \(2\le a+b+c\le27\)(do \(1\le a\le9\) và \(0\le b\le9\) và \(1\le c\le9\))
\(\Rightarrow2\le16+b\le27\)
\(\Rightarrow b=2\)
Ta có: \(a2c-c2a=198\)
\(\Rightarrow100a+20+c-\left(100c+20+a\right)=198\)
\(\Rightarrow99a-99c=198\)
\(\Rightarrow99\left(a-c\right)=198\) \(\Rightarrow a-c=2\)
Mà theo đề bài ta có: \(a+c=16\)
Từ đó ta suy ra: \(a=9\) và \(c=7\)
Vậy số cần tìm là 927