Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
A=/x+5/+10
Ta có: /x+5/>= 0 với mọi x>=0
=> A=/x+5/+10 >= 10
=> Amin=10. Dấu "=" xảy ra <=> x+5=0<=> x=-5
Vậy...
\(\text{a) }A=\left|x+5\right|+10\)
\(\text{Vì }\left|x+5\right|\ge0\forall x\)
\(\Rightarrow A=\left|x+5\right|+10\ge10\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left|x+5\right|=0\)
\(\Rightarrow x=-5\)
\(\text{Vậy Min}_A=10\Leftrightarrow x=-5\)
\(\text{b) }\left|3-x\right|+5\)
\(\text{Vì }\left|3-x\right|\ge0\forall x\)
\(\Rightarrow\left|3-x\right|+5\ge5\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left|3-x\right|=0\)
\(\Rightarrow x=3\)
\(\text{Vậy Min}_B=5\Leftrightarrow x=3\)
\(\text{d) }D=\left(x+2\right)^2+15\)
\(\text{Vì ( x + 2 )}^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+15\ge15\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
\(1,A=\left|x-3\right|+10\)
Vì \(\left|x-3\right|\ge0vs\forall x\Rightarrow A\ge10\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy \(A_{min}=10\Leftrightarrow x=3\)
\(B=-7+\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0vs\forall x\Rightarrow B\ge-7\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(B_{min}=-7\Leftrightarrow x=1\)
\(2,C=-3-\left|x+2\right|\)
Vì \(\left|x+2\right|\ge0\Rightarrow-\left|x+2\right|\le0vs\forall x\)
\(\Rightarrow C\le-3\)
Dấu \("="\) xảy ra \(\Leftrightarrow-\left|x+2\right|=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(C_{max}=-3\Leftrightarrow x=-2\)
\(D=15-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow-\left(x-2\right)^2\le0vs\forall x\)
\(\Rightarrow D\le15\)
Dấu \("="\) xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy \(D_{max}=15\Leftrightarrow x=2\)
Giá trị lớn nhất:
a) A=1
b) B=2015
Giá trị nhỏ nhất:
a) A=-1
b) B=-2
a. Ta có: \(\left|x-3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+10\ge10\)
\(\Rightarrow A\ge10\)
Dấu "=" xảy ra khi x = 3
Vậy AMin = 10 khi x = 3
câu b tương tự
1.1
a, GTNN của A = 10 <=> x=-3
b, GTNN của B = -7 <=> x = -1
1.2
a,GTLN của C = -3 <=> x = 2
b, GTLN của D = 15 <=> x = 4
k mk nha
Bài 1 :
Đề câu a) có thêm \(n\inℤ\)
a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)
Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)
\(\Rightarrow n\left(n+1\right)+2⋮2\)
\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)
hay \(A⋮̸2\) ( đpcm )
b) Ta có : \(\left|2x-4\right|\ge0\forall x\)
\(\Rightarrow-\left|2x-4\right|\le0\forall x\)
\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)
hay \(A\le18\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)
Vậy max \(A=18\) khi \(x=2\)
b1 :
a,n^2 + n + 3
= n(n + 1) + 3
n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2
=> n(n+1) + 3 không chia hết cho 2
b, A = 18 - |2x - 4|
|2x - 4| > 0 => - |2x - 4| < 0
=> 18 - |2x - 4| < 18
=> A < 18
xét A = 18 khi |2x - 4| = 0
=> 2x - 4 = 0
=> x = 2
c, A = |5 - x| + 2015
|5 - x| > 0
=> |5 - x| + 2015 > 2015
=> A > 2015
xét A = 2015 khi |5 - x| = 0
=> 5 - x = 0 => x = 5
\(a.A=\left|x-3\right|+10\)
\(A=\left|x-3\right|+10\ge10\)
\(MinA=10\Leftrightarrow x-3=0\Rightarrow x=3\)
\(B=-7+\left(x-1\right)^2\)
\(B=\left(x-1\right)^2-7\ge-7\)
\(MinB=-7\Leftrightarrow x-1=0\Rightarrow x=1\)
\(b.C=-3-\left|x+2\right|\)
\(C=-\left|x+2\right|-3\le-3\)
\(MaxC=-3\Leftrightarrow x+2=0\Rightarrow x=-2\)
\(D=15-\left(x-2\right)^2\)
\(D=-\left(x-2\right)^2+15\le15\)
\(MaxD=15\Leftrightarrow x-2=0\Rightarrow x=2\)