K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

a) A= \(\sqrt{x-1}+\sqrt{3-x}\)

ĐK: \(\hept{\begin{cases}x-1\text{ ≥ }0\\3-x\text{ ≥ }0\end{cases}}\)=> \(\hept{\begin{cases}x\text{ ≥ }1\\x\text{≤}3\end{cases}}\)

Vậy 1≤x≤3

b) \(\frac{1}{3-\sqrt{5}}-\frac{1}{\sqrt{5}+1}\)

\(=\frac{3+\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{\sqrt{5}-1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=\frac{3+\sqrt{5}}{4}-\frac{\sqrt{5}-1}{4}\)

\(=\frac{3+1}{4}=1\)

26 tháng 9 2017

a, 1 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 3

b, quy đồng mẫu ta được kết quả bằng 1

13 tháng 7 2016

\(25-4x^2\ge0\Leftrightarrow x^2\le\frac{25}{4}\Leftrightarrow\orbr{\begin{cases}x\le\frac{25}{4}\\x\ge\frac{-25}{4}\end{cases}\Leftrightarrow\frac{-25}{4}\le x\le\frac{25}{4}}\)

28 tháng 10 2014

xin lỗi em mới lớp 8 ko trả lời dc

9 tháng 9 2016

Ta có

\(\sqrt{x^2-3x+7}\)

\(=\sqrt{x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{19}{4}}\)

\(=\sqrt{\left(x-\frac{3}{2}\right)^2+\frac{19}{4}}\)

Vì \(\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{19}{4}>0\end{cases}\)\(\Rightarrow\sqrt{\left(x-\frac{3}{2}\right)^2+\frac{19}{4}}>0\)

Vậy biểu thức có ngĩa với mọi x

30 tháng 7 2016

Đề gốc là \(P=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)

\(\frac{P}{4}=\frac{x}{2.2\sqrt{y}}+\frac{y}{2.2\sqrt{z}}+\frac{z}{2.2\sqrt{x}}\)

Áp dụng BĐT Côsi:

\(2.2.\sqrt{x}\le x+2^2=x+4\)

\(\Rightarrow\frac{P}{4}\ge\frac{x}{y+4}+\frac{y}{z+4}+\frac{z}{x+4}=\frac{x^2}{xy+4x}+\frac{y^2}{yz+4y}+\frac{z^2}{zx+4z}\)

\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx+4\left(x+y+z\right)}\ge\frac{\left(x+y+z\right)^2}{\frac{1}{3}\left(x+y+z\right)^2+4\left(x+y+z\right)}=\frac{3\left(x+y+z\right)}{\left(x+y+z\right)+12}\)

\(=3-\frac{36}{x+y+z+12}\ge3-\frac{36}{12+12}=\frac{3}{2}\)

\(\Rightarrow P\ge6\)

Dấu bằng xảy ra khi \(x=y=z=4\)