Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Các ĐKXĐ tự tìm dùm mình hen :)
Ta có : \(D=\left(\frac{5}{x-\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}-3}\)
=> \(D=\left(\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{1}{\sqrt{x}+2}\right)\left(\sqrt{x}-3\right)\)
=> \(D=\left(\frac{5+\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\right)\left(\sqrt{x}-3\right)\)
=> \(D=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\right)\left(\sqrt{x}-3\right)\)
=> \(D=\left(\frac{1}{\sqrt{x}-3}\right)\left(\sqrt{x}-3\right)=1\)
Ta có : \(E=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a+1}}{a-2\sqrt{a}+1}\)
=> \(E=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a+1}}{\left(\sqrt{a}-1\right)^2}\)
=> \(E=\left(\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
=> \(E=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
( làm đến đây thôi câu còn lại bạn tự làm hen )
Ghét nhất mấy câu viết sai đề b, c sai rất nhiều bạn ới
đấy là mình đánh máy tính nên kéo dài hơi nhầm bạn ơi chứ không phải sai đề :))
a) \(A=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(A=\sqrt{\left(2+\sqrt{3}\right)\left(\sqrt{2+\sqrt{3}}+2\right)\left(-\sqrt{2+\sqrt{3}}+2\right)}\)
\(A=\sqrt{1}\)
\(A=1\)
b)\(B=\left(\frac{\sqrt{x}}{\sqrt{xy}-y}-\frac{\sqrt{y}}{\sqrt{xy}-x}\right).\left(x\sqrt{y}-y\sqrt{x}\right)\)
\(B=\frac{\sqrt{xy}}{\sqrt{xy}-y}x\sqrt{y}+\frac{\sqrt{x}}{\sqrt{xy}-y}y\sqrt{x}+\left(-\frac{\sqrt{y}}{\sqrt{xy}-x}\right)^2x\sqrt{y}+y\sqrt{x}\)
\(B=x\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{y}+y\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{x}+x\frac{\sqrt{x}}{\sqrt{xy}-x}\sqrt{y}-y\sqrt{x}\frac{\sqrt{y}}{\sqrt{xy}-y}\)
\(B=\frac{-x^{\frac{5}{2}}\sqrt{y}+\sqrt{x}.y^{\frac{5}{2}}}{\left(\sqrt{xy}-y\right)\left(\sqrt{xy}-x\right)}\)
\(B=\frac{\left(\sqrt{x}.y^{\frac{5}{2}}-x^{\frac{5}{2}}\sqrt{y}\right)\left(y+\sqrt{xy}\right)\left(x+\sqrt{xy}\right)}{\left(-y^2+xy\right)\left(-x^2+xy\right)}\)
c) \(C=\sqrt{\left(3-\sqrt{5}\right)^2+\sqrt{6}-2\sqrt{5}}\)
\(C=14-6\sqrt{5}+\sqrt{6}-2\sqrt{5}\)
\(C=14-8\sqrt{5}+\sqrt{6}\)
\(C=\sqrt{14-8\sqrt{5}+\sqrt{6}}\)
\(A=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(\sqrt{3}-1\right)^2\left(2+\sqrt{3}\right)=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\)
\(B=\frac{\left(\sqrt{a}-1\right)\left(\sqrt{6}-\sqrt{2}\right)\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{a\left(\sqrt{a}-1\right)\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{\sqrt{6}-\sqrt{2}}{a+\sqrt{ab}}\)