K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

b, Ta có : \(0\le x\le1\)

\(\Rightarrow-2\le x-2\le-1< 0\)

Ta có : \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left(2-x\right)}\)

\(=2\left(m-1\right)x-m< 0\)

TH1 : \(m=1\) \(\Leftrightarrow m>0\)

TH2 : \(m\ne1\) \(\Leftrightarrow x< \dfrac{m}{2\left(m-1\right)}\)

\(0\le x\le1\)

\(\Rightarrow\dfrac{m}{2\left(m-1\right)}>1\)

\(\Leftrightarrow\dfrac{m-2\left(m-1\right)}{2\left(m-1\right)}>0\)

\(\Leftrightarrow\dfrac{2-m}{m-1}>0\)

\(\Leftrightarrow1< m< 2\)

Kết hợp TH1 => m > 0

Vậy ...
 

27 tháng 6 2021

\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\)

Để pt có hai nghiệm thỏa mãn

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\x_1+x_2=2\left(m-1\right)\le4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-2\right)\left(m+2\right)\ge0\\m\le3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m\in\left[-2;0\right]\cup\left(2;+\infty\right)\cup\left\{2\right\}\\m\le3\end{matrix}\right.\)\(\Rightarrow m\in\left[-2;0\right]\cup\left[2;3\right]\)

\(P=x^3_1+x_2^3+x_1x_2\left(3x_1+3x_2+8\right)\)

\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_1\left(x_1+x_2\right)+8x_1x_2\)

\(=8\left(m-1\right)^3+8\left(-m^3+m^2+2m+1\right)\)

\(=-16m^2+40m\)

Vẽ BBT với \(f\left(m\right)=-16m^2+40m\) ;\(m\in\left[-2;0\right]\cup\left[2;3\right]\)

Tìm được \(f\left(m\right)_{min}=-144\Leftrightarrow m=-2\)

\(f\left(m\right)_{max}=16\Leftrightarrow m=2\)

\(\Rightarrow P_{max}=16;P_{min}=-144\)

Vậy....

NV
27 tháng 3 2023

\(\Delta'=\left(m-1\right)^2+m^3-\left(m+1\right)^2=m^3-4m\ge0\) \(\Rightarrow\left[{}\begin{matrix}m\ge2\\-2\le m\le0\end{matrix}\right.\)

Theo hệ thức Viet:  \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^3+\left(m+1\right)^2\end{matrix}\right.\)

Do \(x_1+x_2\le4\Rightarrow m-1\le2\Rightarrow m\le3\)

\(\Rightarrow\left[{}\begin{matrix}2\le m\le3\\-2\le m\le0\end{matrix}\right.\)

\(P=x_1^3+x_2^3+3x_1x_2\left(x_1+x_2\right)+8x_1x_2\)

\(=\left(x_1+x_2\right)^3+8x_1x_2\)

\(=8\left(m-1\right)^3+8\left[-m^3+\left(m+1\right)^2\right]\)

\(=8\left(5m-2m^2\right)\)

\(P=8\left(5m-2m^2-2+2\right)=16-8\left(m-2\right)\left(2m-1\right)\le16\)

\(P_{max}=16\) khi \(m=2\)

\(P=8\left(5m-2m^2+18-18\right)=8\left(9-2m\right)\left(m+2\right)-144\ge-144\)

\(P_{min}=-144\) khi \(m=-2\)

30 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2+mx+\left(m+1\right)^2=-x^2-\left(m+2\right)x-2\left(m+1\right)\)

=>\(x^2+mx+\left(m+1\right)^2+x^2+\left(m+2\right)x+2\left(m+1\right)=0\)

=>\(2x^2+\left(2m+2\right)x+2\left(m+1\right)+\left(m+1\right)^2=0\)

=>\(2x^2+\left(2m+2\right)x+\left(m^2+4m+3\right)=0\)

\(\text{Δ}=\left(2m+2\right)^2-4\cdot2\cdot\left(m^2+4m+3\right)\)

\(=4m^2+8m+4-8m^2-32m-24\)

\(=-4m^2-24m-20\)

\(=-4\left(m^2+6m+5\right)=-4\left(m+1\right)\left(m+5\right)\)

Để (P1) cắt (P2) tại hai điểm phân biệt thì Δ>0

=>\(-4\left(m+1\right)\left(m+5\right)>0\)

=>\(\left(m+1\right)\left(m+5\right)< 0\)

TH1: \(\left\{{}\begin{matrix}m+1>0\\m+5< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\)

=>Loại

TH2: \(\left\{{}\begin{matrix}m+1< 0\\m+5>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -1\\m>-5\end{matrix}\right.\)

=>-5<m<-1

Theo Vi-et, ta có: \(x_1+x_2=\dfrac{-\left(2m+2\right)}{2}=-m-1;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+4m+3}{2}\)

\(P=\left|x_1x_2-3\left(x_1+x_2\right)\right|\)

\(=\left|\dfrac{m^2+4m+3}{2}-3\left(-m-1\right)\right|\)

\(=\left|\dfrac{m^2+4m+3}{2}+3m+3\right|\)

\(=\dfrac{\left|m^2+4m+3+6m+6\right|}{2}=\dfrac{\left|m^2+10m+9\right|}{2}\)

Biểu thức này không có giá trị lớn nhất nha bạn

2 tháng 12 2023

vậy biểu thức này có tìm GTNN được không ạ?

nếu tìm được thì mong bạn giải giùm cho mình được không ạ???

11 tháng 3 2021

Đoạn cuối mình làm sai:

\(\dfrac{3m-7}{m-1}< 1\Leftrightarrow\dfrac{2m-6}{m-1}< 0\Leftrightarrow1< m< 3\).

Nếu vậy thì đáp án đúng là A.

 

11 tháng 3 2021

Để pt có 2 nghiệm thì:

\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-2\right)^2-\left(m-3\right)\left(m-1\right)=1\ge0\end{matrix}\right.\Leftrightarrow m\ne1\).

Khi đó theo hệ thức Viète: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\).

Do đó \(x_1+x_2+x_1x_2< 1\Leftrightarrow\dfrac{2\left(m-2\right)+\left(m-3\right)}{m-1}< 1\Leftrightarrow\dfrac{3m-7}{m-1}< 1\Leftrightarrow3m-7< m-1\Leftrightarrow2m< 6\Leftrightarrow m< 3\).

Vậy m là các số thoả mãn m < 3 và m khác 1.

NV
30 tháng 12 2020

\(\Delta=\left(m-1\right)^2-4\left(m+3\right)=m^2-6m-11>0\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+3\end{matrix}\right.\)

Ta có:

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m-1\right)^2-2\left(m+3\right)=m^2-4m-5\)

Biểu thức này ko tồn tại cả min lẫn max với điều kiện m từ (1)

NV
21 tháng 3 2022

\(\Delta'=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)=1>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm với \(m\ne1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\)

\(x_1+x_2+x_1x_2< 1\)

\(\Leftrightarrow\dfrac{2\left(m-2\right)}{m-1}+\dfrac{m-3}{m-1}< 1\)

\(\Leftrightarrow\dfrac{3m-7}{m-1}-1< 0\)

\(\Leftrightarrow\dfrac{2m-6}{m-1}< 0\)

\(\Leftrightarrow1< m< 3\)

21 tháng 3 2022

Điều kiện: m\(\ne\)1.

\(\Delta\)'=(m-2)2-(m-1)(m-3)=1>0.

x1+x2+x1x2=\(\dfrac{2\left(m-2\right)}{m-1}+\dfrac{m-3}{m-1}\)=\(\dfrac{3m-7}{m-1}\)<1 \(\Rightarrow\) 3m-7<m-1 \(\Rightarrow\) m<3.

Vậy với m\(\in\)(-\(\infty\);3)\{1}, yêu cầu bài toán thỏa mãn.

19 tháng 3 2021

\(-x^2-2\left(m-1\right)x+2m-1>0\)

\(\Leftrightarrow x^2+2\left(m-1\right)x-2m+1< 0\)

\(f\left(x\right)=x^2+2\left(m-1\right)x-2m+1\)

Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)=0\) có hai nghiệm phân biệt thỏa mãn \(x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+2m-1>0\\f\left(1\right)\le0\\f\left(0\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2>0\\1+2\left(m-1\right)-2m+1\le0\\-2m+1\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m\ge\dfrac{1}{2}\)

20 tháng 6 2023

Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)

\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)

Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)

20 tháng 6 2023

Có cách nào khác nx ạ?