Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt 3 \approx 1,732...;\,\sqrt {15\,\,129} \, = 123;\,\,\,\,\,\,\sqrt {10\,\,000} = 100;\,\,\,\sqrt {10} \approx 3,162...\)
a) Vì 0,8 > 0 và \(0,{8^2} = 0,64\) nên số 0,8 là căn bậc hai số học của số 0,64
b) Vì tuy \({( - 11)^2} = 121\) nhưng -11 < 0 nên số -11 không phải là căn bậc hai số học của số 121
c) Vì \(1,{4^2} = 1,96\) và 1,4 > 0 nên số 1,4 là căn bậc hai số học của số 1,96
Nhưng vì -1,4 < 0 nên –1,4 không phải là căn bậc hai số học của số 1,96.
\(a)\sqrt {2250} \approx 47,434;\,\,\,\,\,\,b)\sqrt {12} \approx 3,461;\,\,\,\,\,\,\,c)\sqrt 5 \approx 2,236\,\,\,\,\,\,\,\,\,d)\sqrt {624} \approx 24,980\)
Độ chính xác 0,005 tức là ta cần làm tròn đến hàng phần trăm
\(a)\sqrt {15}=3,8729...\approx 3,87\\b)\sqrt {2,56} = 1,6\\c)\sqrt {17256} =131,3620... \approx 131,36\\d)\sqrt {793881} = 891\)
Ta có: \(129{\rm{ }}600 = {2^6}{.3^4}{.5^2} = {({2^3}{.3^2}.5)^2} = {360^2}\) nên \(\sqrt {129600} = 360\)
Căn bậc hai số học của: 16; 7; 10; 36 lần lượt là: \(4;\,\sqrt 7 ;\,\sqrt {10} ;\,6\)
a) \(\sqrt {15} \) đọc là: căn bậc hai số học của mười lăm
\(\sqrt {27,6} \) đọc là: căn bậc hai số học của hai mươi bảy phẩy sáu
\(\sqrt {0,82} \) đọc là: căn bậc hai số học của không phẩy tám mươi hai
b) Căn bậc hai số học của 39 viết là: \(\sqrt {39} \)
Căn bậc hai số học của \(\frac{9}{{11}}\) viết là: \(\sqrt {\frac{9}{{11}}} \)
Căn bậc hai số học của \(\frac{{89}}{{27}}\) viết là: \(\sqrt {\frac{{89}}{{27}}} \)