Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
a)
Ta thấy \(\left\{\begin{matrix} |x+\frac{19}{5}|\geq 0\\ |y+\frac{1890}{1975}|\geq 0\\ |z-2005|\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{Z}\)
\(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|\geq 0\)
Do đó, để \(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|=0\) thì :
\(\left\{\begin{matrix} |x+\frac{19}{5}|= 0\\ |y+\frac{1890}{1975}|= 0\\ |z-2005|=0\end{matrix}\right.\Rightarrow x=\frac{-19}{5}; y=\frac{-1890}{1975}; z=2005\)
b) Giống phần a, vì trị tuyệt đối của một số luôn không âm nên để tổng các trị tuyệt đối bằng $0$ thì:
\(\left\{\begin{matrix} |x+\frac{3}{4}|=0\\ |y-\frac{1}{5}|=0\\ |x+y+z|=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-\frac{3}{4}\\ y=\frac{1}{5}\\ z=-(x+y)=\frac{11}{20}\end{matrix}\right.\)
c) \(\frac{16}{2^x}=1\Rightarrow 16=2^x\)
\(\Leftrightarrow 2^4=2^x\Rightarrow x=4\)
d) \((2x-1)^3=-27=(-3)^3\)
\(\Rightarrow 2x-1=-3\)
\(\Rightarrow 2x=-2\Rightarrow x=-1\)
e) \((x-2)^2=1=1^2=(-1)^2\)
\(\Rightarrow \left[\begin{matrix} x-2=1\\ x-2=-1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=1\end{matrix}\right.\)
f) \((x+\frac{1}{2})^2=\frac{4}{25}=(\frac{2}{5})^2=(\frac{-2}{5})^2\)
\(\Rightarrow \left[\begin{matrix} x+\frac{1}{2}=\frac{2}{5}\\ x+\frac{1}{2}=-\frac{2}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-1}{10}\\ x=\frac{-9}{10}\end{matrix}\right.\)
g) \((x-1)^2=(x-1)^6\)
\(\Leftrightarrow (x-1)^6-(x-1)^2=0\)
\(\Leftrightarrow (x-1)^2[(x-1)^4-1]=0\)
\(\Rightarrow \left[\begin{matrix} (x-1)^2=0\\ (x-1)^4=1=(-1)^4=1^4\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x-1=-1\\ x-1=1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x=0\\ x=2\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x=\left\{0;1;2\right\}\)
a)
\(\left(3x+\dfrac{1}{3}\right)\left(x-\dfrac{1}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+\dfrac{1}{3}=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{9}\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)
\(\left(x-\dfrac{3}{2}\right)\left(2x+1\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{3}{2}>0\\2x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{3}{2}< 0\\2x+1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\)
a: Đặt A=0
=>-2/3x=5/9
hay x=-5/6
b: Đặt B(x)=0
=>(x-2/5)(x+2/5)=0
=>x=2/5 hoặc x=-2/5
c: Đặt C(X)=0
\(\Leftrightarrow x^3\cdot\dfrac{1}{2}=-\dfrac{4}{27}\)
\(\Leftrightarrow x^3=-\dfrac{8}{27}\)
hay x=-2/3
1:
a: =7/5(40+1/4-25-1/4)-1/2021
=21-1/2021=42440/2021
b: =5/9*9-1*16/25=5-16/25=109/25
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
a) \(\dfrac{x}{12}-\dfrac{5}{6}=\dfrac{1}{12}\Rightarrow\dfrac{x}{12}=\dfrac{1}{12}+\dfrac{10}{12}\Rightarrow\dfrac{x}{12}=\dfrac{11}{12}\Rightarrow x=11\)
b) \(\dfrac{2}{3}-1\dfrac{4}{15}x=\dfrac{-3}{5}\Rightarrow\dfrac{10}{15}-\dfrac{19}{15}x=\dfrac{-3}{5}\Rightarrow\dfrac{-19}{15}x=\dfrac{-13}{15}\Rightarrow x=\dfrac{13}{19}\)
c) \(\dfrac{\left(-3\right)^x}{81}=-27\Rightarrow\left(-3\right)^x=-2187\Rightarrow x=7\)
d) \(2^{x-1}=16\Rightarrow x-1=4\Rightarrow x=5\)
e) \(\left(x-1\right)^2=25\Rightarrow x-1=5\Rightarrow x=6\)
g) \(\left(3x-\dfrac{1}{4}\right)\left(x+\dfrac{1}{2}\right)=0\Rightarrow\left[{}\begin{matrix}3x-\dfrac{1}{4}=0\Rightarrow x=\dfrac{1}{12}\\x+\dfrac{1}{2}=0\Rightarrow x=\dfrac{-1}{2}\end{matrix}\right.\)
\(a,3-x=x+1,8\)
\(\Rightarrow-x-x=1,8-3\)
\(\Rightarrow-2x=-1,2\)
\(\Rightarrow x=0,6\)
\(b,2x-5=7x+35\)
\(\Rightarrow2x-7x=35+5\)
\(\Rightarrow-5x=40\)
\(\Rightarrow x=-8\)
\(c,2\left(x+10\right)=3\left(x-6\right)\)
\(\Rightarrow2x+20=3x-18\)
\(\Rightarrow2x-3x=-18-20\)
\(\Rightarrow-x=-38\)
\(\Rightarrow x=38\)
\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)
\(\Rightarrow8x-3+1=1+6x+x\)
\(\Rightarrow8x-3=7x\)
\(\Rightarrow8x-7x=3\)
\(\Rightarrow x=3\)
\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)
\(\Rightarrow-3x+x=\dfrac{4}{3}-\dfrac{2}{9}\)
\(\Rightarrow-2x=\dfrac{10}{9}\)
\(\Rightarrow x=-\dfrac{5}{9}\)
\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{3}{4}x=-\dfrac{1}{2}-\dfrac{5}{6}\)
\(\Rightarrow-\dfrac{1}{4}x=-\dfrac{4}{3}\)
\(\Rightarrow x=\dfrac{16}{3}\)
\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)
\(\Rightarrow x-4=5-x\)
\(\Rightarrow x+x=5+4\)
\(\Rightarrow2x=9\)
\(\Rightarrow x=\dfrac{9}{2}\)
\(k,7x^2-11=6x^2-2\)
\(\Rightarrow7x^2-6x^2=-2+11\)
\(\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(m,5\left(x+3\cdot2^3\right)=10^2\)
\(\Rightarrow5\left(x+24\right)=100\)
\(\Rightarrow x+24=20\)
\(\Rightarrow x=-4\)
\(n,\dfrac{4}{9}-\left(\dfrac{1}{6^2}\right)=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{4}{9}-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)
#\(Urushi\text{☕}\)
a/ \(\dfrac{\left(-3\right)^x}{81}=-27\)
\(\Leftrightarrow\left(-3\right)^x=\left(-27\right).81\)
\(\Leftrightarrow\left(-3\right)^x=-2187\)
\(\Leftrightarrow\left(-3\right)^x=\left(-3\right)^7\)
\(\Leftrightarrow x=7\)
Vậy ...
b/ \(2^{x-1}=16\)
\(\Leftrightarrow2^{x-1}=2^4\)
\(\Leftrightarrow x-1=4\)
\(\Leftrightarrow x=5\)
Vậy ....
c/ \(\left(x-1\right)^2=25\)
\(\Leftrightarrow\left(x-1\right)^2=5^2=\left(-5\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
Vậy ....
d/ \(0,2-\left|4,2-2x\right|=0\)
\(\Leftrightarrow\left|4,2-2x\right|=0,2\)
\(\Leftrightarrow\left[{}\begin{matrix}4,2-2x=0,2\\4,2-2x=-0,2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=4,4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2,2\end{matrix}\right.\)
Vậy ............
e, \(1\dfrac{2}{3}:\dfrac{x}{4}=6:0,3\)
\(\Leftrightarrow\dfrac{5}{3}.\dfrac{4}{x}=20\)
\(\Leftrightarrow3x=1\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
Vậy ..
a) \(\dfrac{\left(-3\right)^x}{81}=-27\)
⇔ \(\dfrac{\left(-3\right)^x}{81}=\dfrac{-2187}{81}\)
⇔ (-3)x = -2187
⇔ (-3)x = (-3)7
⇔ x = 7
b) 2x-1 = 16
⇔ 2x-1 = 24
⇔ x - 1 = 4
⇔ x = 4 + 1
⇔ x = 5
c) (x - 1)2 = 25
⇔ \(\left[{}\begin{matrix}\left(x-1\right)^2=5^2\\\left(x-1\right)^2=\left(-5\right)^2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=5+1\\x=-5+1\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
d) 0,2 - |4,2 - 2x| = 0
⇔ |4,2 - 2x| = 0,2
⇔ \(\left[{}\begin{matrix}4,2-2x=0,2\\4,2-2x=-0,2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}2x=4,2-0,2\\2x=4,2-\left(-0,2\right)\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}2x=4\\2x=4,4\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=2\\x=2,2\end{matrix}\right.\)
e) \(1\dfrac{2}{3}:\dfrac{x}{4}=6:0,3\)
⇔ \(\dfrac{5}{3}.\dfrac{4}{x}=20\)
⇔ \(\dfrac{20}{3x}=20\)
⇔ 3x = 1
⇔ x = \(\dfrac{1}{3}\)