Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
CHòi oi bố đăng nhiều thế con die
a, có
b, ko
c, XÉT 3stn liên tiếp: a,a+1,a+2 (a E N) a có dạng: 3k;3k+1;3k+2 (k E N)
d, tương tự c
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a, Gọi 2 số tự nhiên liên tiếp là n và n +1
Nếu n chia hết cho 2 thì bài toàn luôn đúng
Nếu n chia 2 dư 1 thì n = 2k+1
\(\Rightarrow\)n+1 = 2k + 2 chia hết cho 2
\(\Rightarrow\)Trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2
b, Gọi 3 số tự nhiên liên tiếp là n , n+1, n+2
Nếu n chia hết cho 3 thì bài toán luôn đúng
Nếu n chia 3 dư 1 thì n = 3k+1
\(\Rightarrow\)n + 2 = 3k +3 chia hết cho 3
Nếu n chia 3 dư 2 thì n = 3k + 2
\(\Rightarrow\)n + 1 = 3k + 3 chia hết cho 3
\(\Rightarrow\)Trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
c, Gọi 4 số tự nhiên liên tiếp là n, n+1,n+2 và n+3
Nếu n chia hết cho 4 thì bài toán luôn đúng
Nếu n chia 4 dư 1 thì n = 4k +1
\(\Rightarrow\)n + 3 = 4k +4 chia hết cho 4
Nếu n chia 4 dư 2 thì n = 4k +2
\(\Rightarrow\)n+2=4k+4 chia hết cho 4
Nếu n chia 4 dư 3 thì n = 4k +3
\(\Rightarrow\)n + 1 = 4k +4 chia hết cho 4
\(\Rightarrow\)Trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4
a ) vì 2 số tự nhiên liên tiếp nhau sẽ có một số chẵn và một số lẽ ( Ví dụ : 2 và 3 _ 7 và 8_12345 và 12346 )
và tích của một số chẵn và một số lẽ phải là một số chẵn ( Ví dụ : 2 x 3 = 6_ 7 x 8 = 56 ........)
mà một số chẵn thì luôn luôn chia hết cho 2
suy ra : tích của hai số tự nhiên liên tiếp nhau chia hết cho 2 ( điều phài chứng minh )