K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(1\right)\)

Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{7b}{7d}=\frac{3a-7b}{3c-7d}\left(2\right)\)

Từ (1) và (2) => \(\frac{2a+5b}{2c+5d}=\frac{3a-7b}{3c-7d}\Rightarrow\frac{2a+5b}{3a-7b}=\frac{2c+5d}{3c-7d}\)

Câu b tương tự

22 tháng 10 2017

a) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => a = kb ; c = dk

Ta có \(\dfrac{2a+5b}{3a-7b}=\dfrac{2bk+5b}{3bk-7b}=\dfrac{b\left(2k+5\right)}{b\left(3k-7\right)}=\dfrac{2k+5}{3k-7}\) (1)

\(\dfrac{2c+5d}{3c-7d}=\dfrac{2dk+5d}{3dk-7d}=\dfrac{d\left(2k+5\right)}{d\left(3k-7\right)}=\dfrac{2k+5}{3k-7}\) (2)

Từ (1) và (2) => \(\dfrac{2a+5b}{3a-7b}=\dfrac{2c+5d}{3c-7d}\)

25 tháng 4 2016

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Theo TCDTSBN:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

25 tháng 4 2016

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{5a}{5b}=\frac{2c}{2d}=\frac{4c}{4d}=\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}\)

k nhé!

22 tháng 8 2015

a.Ta có: \(\frac{a}{b}=\frac{2a}{2b}=\frac{c}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{2a}{2b}=\frac{c}{d}=\frac{2a+c}{2b+d}=\frac{2a-c}{2b-d}\)

28 tháng 6 2016

a/b=c/d nên ad=bc

Ta có:

(a+b)(c-d)= ac -ad +bc -bd=ac-bd(1)

(a-b)(c+d)=ac+ad-bc-bd=ac-bd(2)

Từ (1) và (2) suy ra: (a+b)(c-d)=(a-b)(c+d) nên: (a+b)/(a-b)=(c+d)/(c-d)

A/D tỉ lệ thức ta dc :

  \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(=>\frac{a+b}{c+d}=\frac{a-b}{c-d}=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

đpcm