K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

đặt a/b =c/d =k 

=> a=bm , c=dm 

=> 2a+3c/2b+3d =2bm+3bm/ 2b +3d = m.(2d+3d)/2d+3d =m (1)

=> 2a-3c/2d-3d=2bm-3dm /2b -3d =m.(2b-3d)/2b-3d= m (2)

Từ (1) và (2) => 2a+3c/2b+3d =2a-3c/2b-3d 

câu 2 tương tự nha

3 tháng 4 2023

bạn khôi đặt là k mà lại khi m

 

bạn ghi lại đề đi bạn

18 tháng 1 2022

ghi rõ thế r còn j

 

6 tháng 7 2016

sai đề r, a/3 là s, phải a/b chứ, nếu là a/b thì lm ntnày:

Lấy a/b=c/d=k(k thuộc N*) 
=>a=bk ; c=dk 
Xét : + 2a-3c/2b-3d=2bk-3dk/2b-3d= k^2.(2b-3d)/2b-3d=k^2 (1) 
       + 2a+3c/2b+3d=2bk+3dk/2b+3d= k^2.(2b+3d)/2b+3d=k^2 (2) 
(1);(2)=> 2a-3c/2b-3d=2a+3c/2b+3d(đpcm)

Vậy 2a-3c/2b-3d=2a+3c/2b+3d

27 tháng 11 2016

a/ do \(\frac{a}{b}\) = \(\frac{c}{d}\) =  \(\frac{a+c}{b+d}\)=\(\frac{a-c}{b-d}\)(điều phải suy ra)

bạn viết sai đề bài b nhé phân số đầu là \(\frac{2a+3c}{2b+3d}\)

b/ đặt  \(\frac{a}{b}\)\(\frac{c}{d}\) là K

a=Kb;c=Kd

ta có:\(\frac{2a+3c}{2b+3d}\)\(\frac{2Kb+3Kd}{2b+3d}\) = \(\frac{k\left(2b+3d\right)}{2b+3d}\) = K (1)

\(\frac{2a-3c}{2b-3d}\) = \(\frac{2Kb-3Kd}{2b-3d}\) = \(\frac{k\left(2b-3d\right)}{2b-3d}\) =K (2)

từ (!) và (2) suy ra \(\frac{2a+3c}{2b+3d}\) = \(\frac{2a-3c}{2b-3d}\)

20 tháng 12 2016

Giải:
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,b=ck,c=dk\)

Ta có:

\(\left(\frac{a+b-c}{b+c-d}\right)^3=\left(\frac{bk+ck-dk}{b+c-d}\right)^3=\left[\frac{k\left(b+c-d\right)}{b+c-d}\right]^3=k^3\) (1)

\(\left(\frac{2a+3b-4c}{2b+3c-4d}\right)^2=\left(\frac{2bk+3ck-4dk}{2b+3c-4d}\right)^3=\left[\frac{k\left(2b+3c-4d\right)}{2b+3c-4d}\right]^3=k^3\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b-c}{b+c-d}\right)^3=\left(\frac{2a+3b-4c}{2b+3c-4d}\right)^3\) ( đpcm )

25 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

a) => \(\frac{2a+c}{2b+d}=\frac{2kb+kd}{2b+d}=\frac{k\left(2b+d\right)}{2b+d}=k\) (1)

\(\frac{2a-3c}{2b-3d}=\frac{2kb-3kd}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\) (2)

Từ (1) và (2) => \(\frac{2a+c}{2b+d}=\frac{2a-3c}{2b-3d}\)

b) => \(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{b^2}{d^2}\) (1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

27 tháng 12 2020

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó (2a + 3c)(2b - 3d) 

= (2bk + 3dk)(2b - 3d)

= k(2b + 3d)(2b - 3d) (1)

(2a - 3c)(2b + 3d)

= (2bk - 2dk)(2b + 3d)

= k(2b - 3d)(2b + 3d) (2)

Từ (1)(2) => (2a + 3c)(2b - 3d) = (2a - 3c)(2b + 3d)

b) Sửa đề (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d) 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có (4a + 3b)(4c - 3d) = (4bk + 3b)(4dk - 3d) = bd(4k + 3)(4k - 3) (1)

Lại có (4a - 3b)(4c + 3d) = (4bk - 3b)(3dk + 3d) = bd(4k- 3)(4k + 3) (2)

Từ (1)(2) => (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d) 

27 tháng 12 2020

1, Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)

\(\Rightarrow\left(2a+3c\right).\left(2b-3d\right)=\left(2a-3c\right).\left(2b+3d\right)\)

        Vậy (2a + 3c).(2b - 3d) = (2a - 3c).(2b + 3d)

Câu 2 cũng tương tự nên tự làm đi